THE WEAK LEFSCHETZ PROPERTY FOR EQUICHARACTERISTIC, STANDARD GRADED, ARTINIAN GORENSTEIN ALGEBRAS OF EMBEDDING DIMENSION FOUR AND SOCLE DEGREE THREE

ANDREW R. KUSTIN

Abstract

Let \boldsymbol{k} be an arbitrary field and A be a standard graded Artinian Gorenstein \boldsymbol{k}-algebra of embedding dimension four and socle degree three. Then, except for exactly one exception, A has the weak Lefschetz property. Furthermore, the exception occurs only in characteristic two.

CONTENTS

1. Introduction. 1
2. Notation, conventions, and elementary results. 5
2.A. The language. 5
2.B. The homomorphisms $\bowtie, p_{\phi_{3}}$, and $\Gamma_{\phi_{3}}$. 7
2.C. The connection between $\Gamma_{\phi_{3}}$ and the weak Lefschetz property. 9
3. Put the Macaulay inverse system into a convenient form. 10
4. The Macaulay inverse system has a cubic term and $r=2$. 13
5. The Macaulay inverse system has a cubic term and $r=1$. 19
6. The Macaulay inverse system does not have a cubic term, one case. 24
7. The Macaulay inverse system does not have a cubic term, the other case. 2 29
8. The three variables Theorem. 32
References 37

1. Introduction.

The Lefschetz property is a ring-theoretic abstraction of the Hard Lefschetz Theorem for compact Kähler manifolds. Let \boldsymbol{k} be a field. A graded k-algebra A, equal to $\bigoplus_{i=0}^{S} A_{i}$, has the weak Lefschetz property if there is a linear form $\ell \in A_{1}$ so that multiplication by ℓ from A_{i} to A_{i+1} has maximal rank for each i. (Similarly, A has the strong Lefschetz property if multiplication by ℓ^{s} has maximal rank in each degree for every positive integer s for some $\ell \in A_{1}$.) Stanley introduced the concept

[^0]in [27] where he proved that if the characteristic of \boldsymbol{k} is zero, $P=\boldsymbol{k}\left[x_{1}, \ldots, x_{n}\right]$, and $A=P /\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)$, then A has the strong Lefschetz property. Other early proofs of Stanley's theorem were also given by [25] and [28].

Our interest in the weak Lefschetz property for fields of arbitrary characteristic is a consequence of our desire to record the minimal resolution of A by free P-modules in terms of the coefficients of the Macaulay inverse system which determines A. See [8], [9], and especially [10], where this project is carried out for quotient rings A with Castelnuovo regularity two as a P-module, and [11] for quotient rings A of regularity three in three variables. (We also have results along these lines pertaining to ideals of regularity three in four and five variables.) We are able to carry out this project provided A has the weak Lefschetz property, independent of the characteristic of \boldsymbol{k}. The absence of the weak Lefschetz property is an obstruction to this project; but positive characteristic, in and of itself, does not cause any problem.

The weak Lefschetz property is very sensitive to change in characteristic. In positive characteristic p, Brenner and Kaid [4] gave an explicit description of those d and p for which $P /\left(x_{1}^{d}, x_{2}^{d}, \ldots, x_{n}^{d}\right)$ has the weak Lefschetz property when P equals $\boldsymbol{k}\left[x_{1}, \ldots, x_{n}\right], \boldsymbol{k}$ is a field of characteristic p, and $n=3$. The paper [21] is devoted to the analogous project for $4 \leq n$.

Artinian rings with socle degree three are somewhat mysterious. Bøgvad's [3] examples of Artinian Gorenstein rings with transcendental Poincaré series have socle degree three. Rossi and Şega [26] prove that if R is a compressed Artinian Gorenstein local ring with socle degree not equal to three, then the Poincaré series of all finitely generated R-modules are rational, sharing a common denominator. Similarly, it is shown in [20] that if R is a compressed local Artinian ring with odd top socle degree at least five, then the Poincaré series of all finitely generated R modules are rational, sharing a common denominator. The same conclusion does not hold when the top socle degree is three.

Theorem 1.1 is the main result in the paper.
Theorem 1.1. Let \boldsymbol{k} be a field and A be a standard graded Artinian Gorenstein \boldsymbol{k} algebra of embedding dimension four and socle degree three. If the characteristic of \boldsymbol{k} is different than two, then A has the weak Lefschetz property. If the characteristic of A is equal to two, then A has the weak Lefschetz property if and only if A is not isomorphic to

$$
\begin{equation*}
\frac{\boldsymbol{k}[x, y, z, w]}{\left(x y, x z, x w, y^{2}, z^{2}, w^{2}, x^{3}+y z w\right)} . \tag{1.1.1}
\end{equation*}
$$

We first demonstrate that the \boldsymbol{k}-algebra A of (1.1.1) does not satisfy the weak Lefschetz property. Indeed, let $\ell=a x+b y+c z+d w$ be an arbitrary nonzero linear
form in A. If at least one of the parameters b, c, or d is nonzero, then let ℓ^{\prime} be the nonzero linear form $\ell^{\prime}=b y+c z+d w \in A_{1}$. Observe that

$$
\ell \ell^{\prime}=a x(b y+c z+d w)+b^{2} y^{2}+c^{2} z^{2}+d^{2} w^{2}=0 \in A
$$

If $b=c=d=0$, then let ℓ^{\prime} be the nonzero linear form $\ell^{\prime}=y$ of A_{1}. Observe that $\ell \ell^{\prime}=a x y=0$ in A. In either case, the arbitrary nonzero linear form ℓ is zero divisor on A.

In the rest of the paper we show that if A satisfies the hypotheses of Theorem 1.1, but is not isomorphic to the ring of (1.1.1), then A has the weak Lefschetz property. We use a Macaulay inverse system for A.

Let U be the vector space A_{1}, P be the polynomial ring $P=\operatorname{Sym}_{\bullet} U, I$ be a homogeneous ideal of P with A isomorphic to $P / I, U^{*}$ be the dual space $\operatorname{Hom}_{k}(U, \boldsymbol{k})$ of U, and $D_{\bullet} U^{*}$ be the divided power \boldsymbol{k}-algebra $\bigoplus_{0 \leq i} D_{i} U^{*}$, with

$$
D_{i} U^{*}=\operatorname{Hom}_{\boldsymbol{k}}\left(\operatorname{Sym}_{i} U, \boldsymbol{k}\right)
$$

The rules for a divided power algebra are recorded in [16, Section 7] or [7, Appendix 2]. (In practice these rules say that $w^{(n)}$ behaves like $w^{n} /(n!)$ would behave if n ! were a unit in R.)

Macaulay duality guarantees that

$$
\operatorname{ann}_{D \cdot U^{*}} I
$$

is a cyclic P-submodule of $D_{\bullet} U^{*}$ generated by an element in $D_{3} U^{*}$. (Any generator $\operatorname{ann}_{D_{\mathbf{\bullet}} U^{*}} I$ in $D_{3} U^{*}$ is called a Macaulay inverse system for A.) Furthermore, if ϕ_{3} is a Macaulay inverse system for A, then

$$
I=\operatorname{ann}_{P} \phi_{3} .
$$

The hypothesis that A has embedding dimension four ensures that

$$
\begin{equation*}
\ell \phi_{3} \neq 0 \quad \text { for any nonzero } \ell \text { in } U . \tag{1.1.2}
\end{equation*}
$$

We observe that the Macaulay inverse system for the k-algebra A of (1.1.1) is

$$
\begin{equation*}
\phi_{3}=x^{*(3)}+y^{*} z^{*} w^{*} . \tag{1.1.3}
\end{equation*}
$$

In section 3 we put the Macaulay inverse system into the form

$$
\begin{equation*}
\alpha \phi_{3}=x^{*(3)}+x^{*} \phi_{2,0}+\phi_{3,0} \tag{1.1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha \phi_{3}=x^{*(2)} y^{*}+x^{*} \phi_{2,0}+\phi_{3,0}, \tag{1.1.5}
\end{equation*}
$$

for some unit α, with $\phi_{i, 0} \in D_{i}\left(\boldsymbol{k} y^{*} \oplus \boldsymbol{k} z^{*} \oplus \boldsymbol{k} w^{*}\right)$. We study various cases depending on whether ϕ_{3} has form (1.1.4) or (1.1.5) and also depending on how complicated
$\phi_{2,0}$ is. We treat the four significant cases in Sections 4, 5, 6, and 7. All of our calculations employ the homomorphism

$$
\Gamma_{\phi_{3}}: D_{d} U \otimes \bigwedge^{d} U \rightarrow \bigwedge^{d} U^{*}
$$

which is introduced in section 2.B. The connection between $\Gamma_{\phi_{3}}$ and the weak Lefschetz property is explained in Lemma 2.9. Roughly speaking,

$$
\Gamma_{\phi_{3}}\left(\ell{ }^{(d)} \otimes x_{1} \wedge \ldots \wedge x_{d}\right)=\ell x_{1} \phi_{3} \wedge \ldots \wedge \ell x_{d} \phi_{3} \in \wedge^{d} U^{*}
$$

for $\ell, x_{1}, \ldots, x_{d} \in U$ and $\phi_{3} \in U^{*}$. It is shown in Lemma 2.9 that if ϕ_{3} is a Macaulay inverse system for A and $\ell \phi_{3}$ is nonzero for all nonzero ℓ in U, then
A has the weak Lefschetz property $\Longleftrightarrow \Gamma_{\phi_{3}}$ is not identically zero.
The hypothesis that $\ell \phi_{3}$ is nonzero whenever ℓ in U is nonzero is innocuous. It merely says that the embedding dimension of A is equal to the number of variables of P. If this hypothesis is not satisfied, then one can view A as a quotient of a polynomial ring with one fewer variable than P has.

Traditionally, the Lefschetz properties are studied in a graded \boldsymbol{k}-algebra where \boldsymbol{k} is a field of characteristic zero. In particular, for example, Gondim and Zappala [13, Cor. 5.5] have proven that a standard graded Gorenstein \boldsymbol{k}-algebra of small codimension, with socle degree three, and presented by quadrics, has the weak Lefschetz property, provided the field \boldsymbol{k} has characteristic zero. Duality is obtained using the algebra of differential operators $Q=k\left[\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right]$. Every graded Artinian Gorenstein algebra A has a presentation of the form

$$
\begin{equation*}
A \cong Q / \operatorname{ann}_{Q} F, \tag{1.1.6}
\end{equation*}
$$

for some n and some homogeneous polynomial $F \in \boldsymbol{k}\left[x_{1}, \ldots, x_{n}\right]$, where

$$
\operatorname{ann}_{Q} F=\{\phi \in Q \mid \phi(F(x))=0\} .
$$

The Hessian of the form F is the determinant of the square matrix $\left(\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}\right)$ of second order partial derivatives of F. When \boldsymbol{k} has characteristic zero, Watanabe (see [29, 22]) has shown that (1.1.6) fails to have the Strong Lefschetz Property if and only if one of the non-trivial higher Hessians of F vanishes. This result has been generalized to the weak Lefschetz property using "mixed Hessians", see [13].

For the time being keep \boldsymbol{k} a field of characteristic zero and let F be a homogeneous form in $\boldsymbol{k}\left[x_{1}, \ldots, x_{n}\right]$. Hesse $[17,18]$ believed that the Hessian of F vanishes if and only if the projective variety X, defined by F, is a cone. However, Gordan and Noether [14] proved that while Hesse's claim is true when the degree of F is 2 or $n \leq 4$, it is false for $5 \leq n$ and for forms of degree at least three. Gordan and Noether realized that X being a cone is equivalent to the condition that the partial derivatives of F are k-linearly dependent, while F has vanishing Hessian if and only if the partial derivatives of F are \boldsymbol{k}-algebraically dependent. A class of forms F, discussed
both in [14] and by Perazzo [24], with vanishing Hessian and for which $V(F)$ is not a cone, are the Perazzo forms

$$
F=x_{1} p_{1}+\cdots+x_{a} p_{a}+G \in \boldsymbol{k}\left[x_{1}, \ldots, x_{a}, u_{1}, \ldots, u_{b}\right],
$$

where p_{1}, \ldots, p_{a} and G are in $\boldsymbol{k}\left[u_{1}, \ldots, u_{b}\right]$, and p_{1}, \ldots, p_{a} are linearly independent, but algebraically dependent. In particular, for $a+b=5$, all non-cones defined by a form with vanishing Hessian are defined by a Perazzo form. (See [14] or [30, Theorem 7.3].) The Lefschetz properties of rings defined by Perazzo forms in characteristic zero are investigated in the recent papers [12, 1].
J. Watanabe and M. de Bondt [30] have written a detailed modern argument for the Gordan-Noether Theorem. The paper [5] uses geometric techniques to give a new proof of the Gordan-Noether Theorem. In both of these papers the field \boldsymbol{k} has characteristic zero.

We work in arbitrary characteristic; so we do not take literal partial derivatives. Instead we use the divided power algebra $D_{\bullet} U^{*}$ which is associated to the polynomial ring $P=\operatorname{Sym}_{\bullet} U$ for the vector space U over the field \boldsymbol{k}. We replace the "Hessian of F " with the homomorphism " $\Gamma_{\phi_{3}}$ " of Section 2.B.

In Section 8 we state and prove the three variable version of the Main Theorem (Theorem 1.1). Our precise formulation of the three variable version (see Lemma 8.2) is used in the inductive part of the proof of Theorem 1.1. (See the case $r=0$ in Lemma 5.3.) Furthermore, we prove the three variable version using the same argument as we use for the four variable version; except there are fewer cases and each calculation is more straightforward. The reader might want to read Section 8 as a preparation for reading the proof of Theorem 1.1.

2. NOTATION, CONVENTIONS, AND ELEMENTARY RESULTS.

2.A. The language.

Conventions 2.1. (a) The graded algebra $A=\bigoplus_{0 \leq i} A_{i}$ is a standard graded $A_{0}{ }^{-}$ algebra if A_{1} is finitely generated as an A_{0}-module and A is generated as an A_{0}-algebra by A_{1}.
(b) Let k be a field and $A=\bigoplus A_{i}$ be a standard graded k-algebra. Then A has the weak Lefschetz property if there exists a linear form ℓ of A_{1} such that the \boldsymbol{k}-module homomorphism

$$
\mu_{\ell}: A_{i} \rightarrow A_{i+1}
$$

has maximal rank for each index i, where μ_{ℓ} is multiplication by ℓ. (A homomorphism $\xi: V \rightarrow W$ of finitely generated \boldsymbol{k}-modules has maximal rank if rank ξ is equal to $\min \{\operatorname{dim} V, \operatorname{dim} W\}$.)
(c) If $A=\bigoplus_{i=0}^{\sigma} A_{i}$ is an Artinian standard-graded k-algebra, then A is Gorenstein with socle degree σ if A_{σ} is a one dimensional vector space and every ideal of A contains A_{σ}.
(d) In this paper \boldsymbol{k} is an arbitrary field (unless otherwise noted) and Hom, Sym, D, Λ, \wedge, and \otimes mean $\operatorname{Hom}_{k}, \operatorname{Sym}^{k}, D^{k}, \wedge_{k}, \wedge_{k}$ and \otimes_{k}, respectively.
(e) If U is a vector space over the field \boldsymbol{k}, then $T_{\bullet} U, \operatorname{Sym}_{\bullet} U, D_{\bullet} U$, and $\Lambda^{\bullet} U$ are the tensor algebra, symmetric algebra, divided power algebra, and exterior algebra of U over \boldsymbol{k}, respectively. See, for example, [23] or [7].
(f) If M is a matrix, then $\operatorname{det} M=|M|$ is the determinant of M.
(g) If f is a homomorphism, then we write $\operatorname{im} f$ and $\operatorname{ker} f$ for the image and kernel of f, respectively.
(h) If U is a vector space, then $\operatorname{dim} U$ is the dimension of U as a vector space.

Conventions 2.2. (a) If U is a finite dimensional vector space over the field \boldsymbol{k}, then U^{*} represents $\operatorname{Hom}_{\boldsymbol{k}}(U, \boldsymbol{k})$ and $D_{\bullet} U^{*}$ represents the divided power algebra $\bigoplus_{i=0}^{\infty} D_{i} U^{*}$ for

$$
D_{i} U^{*}=\operatorname{Hom}_{\boldsymbol{k}}\left(\operatorname{Sym}_{i} U, \boldsymbol{k}\right) .
$$

(b) If x_{1}, \ldots, x_{d} is a basis for U, then the set of monomials of degree i in x_{1}, \ldots, x_{d}, denoted $\binom{x_{1}, \ldots, x_{d}}{i}$, is a basis for the i-th symmetric power, $\operatorname{Sym}_{i} U$, of U and the set of homomorphisms

$$
\left\{m^{*} \left\lvert\, m \in\binom{x_{1}, \ldots, x_{d}}{i}\right.\right\}
$$

is a basis for $D_{i} U^{*}$ where $m^{*}: \operatorname{Sym}_{i} U \rightarrow \boldsymbol{k}$ is the \boldsymbol{k}-module homomorphism with

$$
m^{*}\left(m^{\prime}\right)= \begin{cases}1, & \text { if } m=m^{\prime}, \text { and } \tag{2.2.1}\\ 0, & \text { if } m \neq m^{\prime}\end{cases}
$$

for m, m^{\prime} in $\binom{x_{1}, \ldots, x_{d}}{i}$.
(c) We make much use of the structure of $D_{\mathbf{\bullet}} U^{*}$ as a module over $\operatorname{Sym}_{\boldsymbol{\bullet}} U$. If $v_{i} \in D_{U}^{*}$ and $u_{j} \in \operatorname{Sym}_{j} U$, then $u_{j} v_{i}$ is the element of $D_{i-j} U^{*}$ which sends u_{i-j} in $\operatorname{Sym}_{i-j} U$ to $v_{i}\left(u_{j} u_{i-j}\right)$. In particular, if m and m^{\prime} are monomials in Sym. U (with respect to some basis x_{1}, \ldots, x_{d} for U and $*$ is defined as in (2.2.1)), then

$$
m^{\prime}(m)^{*}= \begin{cases}\left(\frac{m}{m^{\prime}}\right)^{*}, & \text { if } m^{\prime} \text { divides } m, \\ 0, & \text { if } m^{\prime} \text { does not divide } m\end{cases}
$$

(d) If u^{*} is an element of U^{*}, then we write $u^{*(n)}$ for the element $\left(u^{*}\right)^{(n)}$ in $D_{n} U^{*}$.
(e) If x_{1}, \ldots, x_{d} is a basis for the vector space U, then $x_{1}^{*}, \ldots, x_{d}^{*}$ is the dual basis for U^{*}. Similarly, if then $x_{1}^{*}, \ldots, x_{d}^{*}$ is a basis for a vector space U^{*}, then x_{1}, \ldots, x_{d} is the dual basis for the vector space U.
(f) If $u_{i} \in \operatorname{Sym}_{i} U$ and $\phi_{i} \in D_{i} U^{*}$, then $u_{i} \phi_{i}=\phi_{i} u_{i}$ is an element of \boldsymbol{k}.

The following data is used throughout the paper.

Data 2.3. Let k be a field, U be a d-dimensional vector space over \boldsymbol{k}, P be the polynomial ring $P=\operatorname{Sym}_{\bullet} U, \phi_{3}$ be a non-zero element of $D_{3} U^{*}, I=\operatorname{ann}_{P}\left(\phi_{3}\right)$, and $A_{\phi_{3}}$ be the standard graded Artinian Gorenstein k-algebra $A_{\phi_{3}}=P / I$. The socle degree of A is three.

2.B. The homomorphisms $\bowtie, p_{\phi_{3}}$, and $\Gamma_{\phi_{3}}$.

Notation 2.4. Let \boldsymbol{k} be a field, E and G be \boldsymbol{k}-modules, and m be a positive integer. Each pair of elements (X, Y), with $X \in D_{m} E$ and $Y \in \bigwedge^{m} G$, gives rise to an element of $\Lambda^{m}(E \otimes G)$, which we denote by $X \bowtie Y$. We now give the definition of $X \bowtie Y$. Consider the composition

$$
D_{m} E \otimes T_{m} G \xrightarrow{\Delta \otimes 1} T_{m} E \otimes T_{m} G \xrightarrow{\xi} \bigwedge^{m}(E \otimes G),
$$

where $\Delta: D_{m} E \rightarrow T_{m} E$ is co-multiplication and

$$
\xi\left(\left(x_{1} \otimes \ldots \otimes x_{m}\right) \otimes\left(y_{1} \otimes \ldots \otimes y_{m}\right)\right)=\left(x_{1} \otimes y_{1}\right) \wedge \ldots \wedge\left(x_{m} \otimes y_{m}\right)
$$

for $x_{i} \in E$ and $y_{i} \in G$. It is easy to see that the above composition factors through $D_{m} E \otimes \bigwedge^{m} G$. Let $X \otimes Y \mapsto X \bowtie Y$ be the resulting map from $D_{m} E \otimes \bigwedge^{m} G$ to $\bigwedge^{m}(E \otimes G)$. This map is used in [19] and is called $\langle-,-\rangle$ in [2, III.2].

Definition 2.5. Adopt Data 2.3.
(a) Define the \boldsymbol{k}-module homomorphism $p_{\phi_{3}}: \operatorname{Sym}_{2} U \rightarrow U^{*}$ by $p_{\phi_{3}}\left(u_{2}\right)=u_{2}\left(\phi_{3}\right)$, for $u_{2} \in \operatorname{Sym}_{2} U$.
(b) Define the k-module homomorphism $\Gamma_{\phi_{3}}: D_{d} U \otimes \bigwedge^{d} U \rightarrow \bigwedge^{d} U^{*}$ to be the composition

$$
D_{d} U \otimes \bigwedge^{d} U \xrightarrow{\bowtie} \bigwedge^{d}(U \otimes U) \xrightarrow{\bigwedge^{d} \text { mult }} \bigwedge^{d}\left(\operatorname{Sym}_{2} U\right) \xrightarrow{\bigwedge^{d} p_{\phi_{3}}} \bigwedge^{d} U^{*}
$$

where

$$
\text { mult }: U \otimes U \rightarrow \operatorname{Sym}_{2} U
$$

is multiplication in the Symmetric algebra Sym. U.
Example 2.6. Adopt Data 2.3. Let $\Gamma_{\phi_{3}}$ be the \boldsymbol{k}-module homomorphism of Definition 2.5.(b). Let $\ell_{1}, \ldots, \ell_{d}$ be a basis for U.

If $d=3$, then

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(\ell_{1}^{(3)} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3}\right) & =\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3},
\end{array} \\
\Gamma_{\phi_{3}}\left(\ell_{1}^{(2)} \ell_{2} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3}\right) & =\left\{\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3}, \text { and }
\end{array}\right. \\
\Gamma_{\phi_{3}}\left(\ell_{1} \ell_{2} \ell_{3} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3}\right) & =\left\{\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{3}^{2} \phi_{3} \\
+2 \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} .
\end{array}\right.
\end{aligned}
$$

If $\operatorname{dim} U=4$, then

$$
\Gamma_{\phi_{3}}\left(\ell_{1}^{(4)} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3} \wedge \ell_{4}\right)=\quad \ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3},
$$

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(\ell_{1}^{(3)} \ell_{2} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3} \wedge \ell_{4}\right)= & \left\{\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3},
\end{array}\right. \\
\Gamma_{\phi_{3}}\left(\ell_{1}^{(2)} \ell_{2}^{(2)} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3} \wedge \ell_{4}\right)= & \left\{\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3} \\
+\ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3},
\end{array}\right. \\
\Gamma_{\phi_{3}}\left(\ell_{1}^{(2)} \ell_{2} \ell_{3} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3} \wedge \ell_{4}\right)= & \left\{\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{3} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{3}^{2} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{3} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3} \\
+\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{3}^{2} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3} \\
+2 \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3}, \text { and }
\end{array}\right. \\
\Gamma_{\phi_{3}}\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4} \otimes \ell_{1} \wedge \ell_{2} \wedge \ell_{3} \wedge \ell_{4}\right)= & \left\{\begin{array}{c}
\ell_{1}^{2} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{3}^{2} \phi_{3} \wedge \ell_{4}^{2} \phi_{3} \\
+2 \ell_{1}^{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{3} \ell_{4} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3} \\
+2 \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{2}^{2} \phi_{3} \wedge \ell_{3} \ell_{4} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3} \\
+2 \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{4} \phi_{3} \wedge \ell_{3}^{2} \phi_{3} \wedge \ell_{1} \ell_{4} \phi_{3} \\
+2 \ell_{1} \ell_{2} \phi_{3} \wedge \ell_{2} \ell_{3} \phi_{3} \wedge \ell_{1} \ell_{3} \phi_{3} \wedge \ell_{4}^{2} \phi_{3} .
\end{array}\right.
\end{aligned}
$$

Remark 2.7 is used in the proof of Observation 2.8.
Remark 2.7. Field extensions are always faithfully flat. Let V be a vector space over a field \boldsymbol{k}, K be a field extension of \boldsymbol{k}, and $v \in V$. If $v \otimes_{\boldsymbol{k}} 1$ is zero in $V \otimes_{\boldsymbol{k}} K$, then v is zero in V.

Observation 2.8. Adopt Data 2.3. If the homomorphism

$$
\Gamma_{\phi_{3}}: D_{d} U \otimes \bigwedge^{d} U \rightarrow \bigwedge^{d} U^{*}
$$

of Definition 2.5 satisfies $\Gamma_{\phi_{3}}\left(\ell^{(d)} \otimes \omega_{U}\right)=0$ for all $\ell \in U$ and some basis element ω_{U} of $\bigwedge^{d} U$, then $\Gamma_{\phi_{3}}$ is identically zero.

Proof. Fix a basis ω_{U} for $\bigwedge^{d} U$. The map

$$
\Gamma_{\phi_{3}}\left(-\otimes \omega_{U}\right): U \rightarrow \bigwedge^{d} U^{*}
$$

is a linear transformation of vector spaces over a field. In light of Remark 2.7, it suffices to prove the assertion when \boldsymbol{k} has a large number of elements.

The proof of Observation 2.8 is obtained by iterating the following claim.
Claim 2.8.1. Let X be an element of $D_{\delta} U$ for some integer δ with $0 \leq \delta \leq d$. If $\Gamma_{\phi_{3}}\left(\ell^{(d-\delta)} X \otimes \omega_{U}\right)=0$ for all $\ell \in U$, then $\Gamma_{\phi_{3}}\left(\ell_{1}^{\left(e_{1}\right)} \ell_{2}^{\left(e_{2}\right)} X \otimes \omega_{U}\right)=0$ for all ℓ_{1}, ℓ_{2} in U and all nonnegative integers e_{1} and e_{2} with $e_{1}+e_{2}=d-\delta$.

Proof of Claim 2.8.1. If ℓ_{1} and ℓ_{2} are in U and $a_{1}, \ldots, a_{d-\delta+1}$ are distinct elements of k, then

$$
\begin{equation*}
\Gamma_{\phi_{3}}\left(\left(\ell_{1}+a_{i} \ell_{2}\right)^{(d-\delta)} X \otimes \omega_{U}\right)=\sum_{j=0}^{d-\delta} a_{i}^{j} \Gamma_{\phi_{3}}\left(\ell_{1}^{(d-\delta-j)} \ell_{2}^{(j)} X \otimes \omega_{U}\right) \tag{2.8.2}
\end{equation*}
$$

The hypothesis guarantees that the left side of (2.8.2) is zero. It follows that product of the row vector

$$
\left[\begin{array}{lllll}
\Gamma_{\phi_{3}}\left(\ell_{1}^{(d-\delta-0)} \ell_{2}^{(0)} X \otimes \omega_{U}\right) & \Gamma_{\phi_{3}}\left(\ell_{1}^{(d-\delta-1)} \ell_{2}^{(1)} X \otimes \omega_{U}\right) & \ldots & \Gamma_{\phi_{3}}\left(\ell_{1}^{(0)} \ell_{2}^{(d-\delta-0)} X \otimes \omega_{U}\right)
\end{array}\right]
$$

and the Vandermonde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{2.8.3}\\
a_{1} & a_{2} & \ldots & a_{d-\delta+1} \\
\vdots & \vdots & & \vdots \\
a_{1}^{d-\delta} & a_{2}^{d-\delta} & \ldots & a_{d-\delta+1}^{d-\delta}
\end{array}\right]
$$

is zero. The Vandermonde matrix is invertible and $\Gamma_{\phi_{3}}\left(\ell_{1}^{\left(e_{1}\right)} \ell_{2}^{\left(e_{2}\right)} X \otimes \omega_{U}\right)=0$ for all ℓ_{1} and ℓ_{2} in U and all non-negative integers e_{i} with $e_{1}+e_{2}=d-\delta$. This completes the proof of Claim 2.8.1.

Now we prove Observation 2.8. First take $X=1$. The hypothesis ensures that $\Gamma_{\phi_{3}}\left(\ell^{(d)} \otimes \omega_{U}\right)=0$ for all $\ell \in U$. Apply Claim 2.8.1 to conclude that

$$
\begin{array}{ll}
\Gamma_{\phi_{3}}\left(\ell_{1}^{\left(e_{1}\right)} \ell_{2}^{\left(e_{2}\right)} \otimes \omega_{U}\right)=0 & \text { for all } \ell_{1}, \ell_{2} \in U \text { and all nonnegative } \tag{2.8.4}\\
& \text { integers } e_{1} \text { and } e_{2} \text { with } e_{1}+e_{2}=d .
\end{array}
$$

Now take $X=\ell_{3}^{\left(e_{3}\right)}$ for some $\ell_{3} \in U$ and some integer e_{3} with $0 \leq e_{3} \leq d$. Apply Claim 2.8.1, together with (2.8.4), to conclude that $\Gamma_{\phi_{3}}\left(\ell_{1}^{\left(e_{1}\right)} \ell_{2}^{\left(e_{2}\right)} \ell_{3}^{\left(e_{3}\right)} \otimes \omega_{U}\right)=0$, for all $\ell_{1}, \ell_{2}, \ell_{3} \in U$ and all nonnegative integers e_{1}, e_{2}, and e_{e} with $e_{1}+e_{2}+e_{3}=d$.

One finishes the proof by iterating Claim 2.8.1.

2.C. The connection between $\Gamma_{\phi_{3}}$ and the weak Lefschetz property.

Lemma 2.9. Adopt Data 2.3 and Definition 2.5. Assume $\ell \phi_{3} \neq 0$ for all nonzero ℓ in U. Then $A=A_{\phi_{3}}$ has the weak Lefschetz property if and only if $\Gamma_{\phi_{3}}$ is not identically zero.

Remark 2.10. The hypothesis $\ell \phi_{3} \neq 0$ for all nonzero ℓ in U is harmless. It is equivalent to asserting that the degree one component of the ideal I is zero. Consequently, it is also equivalent to the hypothesis that the embedding dimension of A is equal to the vector space dimension of U.

Proof. Recall from Observation 2.8 that

$$
\Gamma_{\phi_{3}}\left(\ell^{(d)} \otimes-\right) \text { is zero for all } \ell \in U \Longleftrightarrow \Gamma_{\phi_{3}} \text { is identically zero. }
$$

Let x_{1}, \ldots, x_{d} be a basis for U, ℓ be an element of U, and μ_{ℓ} represent the homomorphism "multiplication by ℓ ". Observe that
ℓ is a weak Lefschetz element in A

$$
\begin{aligned}
& \Longleftrightarrow \mu_{\ell}: A_{1} \rightarrow A_{2} \text { is injective } \\
& \Longleftrightarrow \mu_{\ell}: P_{1} \rightarrow A_{2} \text { is injective }, \\
& \Longleftrightarrow\left\{\begin{array}{l}
\ell\left(\sum a_{i} x_{i}\right)\left(\phi_{3}\right)=0, \text { with } a_{i} \text { in } \boldsymbol{k}, \\
\text { only if all } a_{i} \text { are zero },
\end{array} \quad \text { because } I_{1}=0,\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
\ell x_{1}\left(\phi_{3}\right), \ell x_{2}\left(\phi_{3}\right), \ldots, \ell x_{d}\left(\phi_{3}\right) \text { are linearly } \\
\text { independent in } U^{*},
\end{array}\right. \\
& \Longleftrightarrow \Gamma_{\phi_{3}}\left(\ell^{(d)} \otimes x_{1} \wedge x_{2} \wedge \ldots \wedge x_{d}\right) \neq 0 .
\end{aligned}
$$

Theorem 1.1, which is the main result of this paper, is an immediate consequence of Lemma 2.11, which is an immediate consequence of Lemma 2.9.

Lemma 2.11. Adopt Data 2.3 with $d=4$. Assume
(a) either the characteristic of \boldsymbol{k} is different than two; or else, the characteristic of \boldsymbol{k} is equal to two, but there does not exist a basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*} with $\phi_{3}=x^{*(3)}+y^{*} z^{*} w^{*}$, and
(b) $\ell \phi_{3} \neq 0$ for all nonzero $\ell \in U$.

Then $\Gamma_{\phi_{3}}$ is not identically zero.
The proof of Lemma 2.11 involves multiple cases and comprises the majority of this paper. The official proof is given in (3.4).

3. Put the Macaulay inverse system into a convenient form.

Ultimately, we prove a statement about an element ϕ_{3} of $D_{3} U^{*}$, where U is a four-dimensional vector space. Our proof depends on the form of ϕ_{3}. There are four main cases. Two of the cases involve ϕ_{3} as described in (a) of Lemma 3.1. (These two cases are distinguished by the rank r of the homomorphism $p_{\phi_{2,0}}$; see Lemma 3.2.) These two cases are treated in Propositions 4.1 and 5.1. The other two cases involve ϕ_{3} as described in (b) of Lemma 3.1. These two cases are separated in 6.3 and are treated in Propositions 6.4 and 7.1.

In most characteristics, all ϕ_{3} can be put in the form of (a) of Lemma 3.1; however, form (b) of Lemma 3.1 is required in characteristic three.

Lemma 3.1. Let \boldsymbol{k} be a field, U be a d-dimensional vector space over \boldsymbol{k}, and ϕ_{3} be a nonzero element of $D_{3} U^{*}$. Then there exists a unit α of \boldsymbol{k} and a basis $x_{1}^{*}, \ldots, x_{d}^{*}$ for U^{*} such that
(a) $\alpha \phi_{3}=x_{1}^{*(3)}+x_{1}^{*} \phi_{2,0}+\phi_{3,0}$, or
(b) $\alpha \phi_{3}=x_{1}^{*(2)} x_{2}^{*}+x_{1}^{*} \phi_{2,0}+\phi_{3,0}$, or
(c) \boldsymbol{k} has characteristic two and

$$
\phi_{3}=\sum_{1 \leq i<j<k \leq d} \alpha_{i, j, k} x_{i}^{*} x_{j}^{*} x_{k}^{*}
$$

for some $\alpha_{i, j, k}$ in \boldsymbol{k},
where $\phi_{i, 0}$ is an element of

$$
D_{i}\left(\bigoplus_{2 \leq j \leq d} \boldsymbol{k} x_{j}^{*}\right)
$$

Remark. The case (c) is not very interesting when $d=4$; see (3.4).
Proof. Begin with an arbitrary basis $y_{1}^{*}, \ldots, y_{d}^{*}$ for U^{*}.
Claim 3.1.1. After a change of basis,

$$
\begin{align*}
\alpha \phi_{3} & =x_{1}^{*(3)}+x_{1}^{*(2)} \phi_{1,0}+x_{1}^{*} \phi_{2,0}+\phi_{3,0}, \text { with } \alpha \neq 0, \text { or } \tag{3.1.2}\\
\phi_{3} & =x_{1}^{*(2)} \phi_{1,0}+x_{1}^{*} \phi_{2,0}+\phi_{3,0}, \text { with } \phi_{1,0} \neq 0, \text { or } \tag{3.1.3}\\
\phi_{3} & =\sum_{1 \leq i<j<k \leq d} \alpha_{i, j, k} x_{i}^{*} x_{j}^{*} x_{k}^{*} \tag{3.1.4}
\end{align*}
$$

with $\alpha, \alpha_{i, j, k}$ in \boldsymbol{k} and $\phi_{i, 0} \in D_{i}\left(\bigoplus_{2 \leq j \leq d} \boldsymbol{k} x_{j}^{*}\right)$.
Proof of Claim 3.1.1. Write ϕ_{3} as

$$
\phi_{3}=\sum_{e_{1}+\cdots+e_{d}=3} \alpha_{e_{1}, \ldots, e_{d}} y_{1}^{*\left(e_{1}\right)} y_{2}^{*\left(e_{2}\right)} \cdots y_{d-1}^{*\left(e_{d-1}\right)} y_{d}^{*\left(e_{d}\right)}
$$

with $\alpha_{e_{1} \ldots, e_{d}} \in \boldsymbol{k}$. If any of the parameters

$$
\begin{equation*}
\alpha_{0, \ldots, 0,3,0, \ldots, 0} \tag{3.1.5}
\end{equation*}
$$

is nonzero, then ϕ_{3} has the form of (3.1.2).
If the parameters of $(3.1 .5)$ are zero; but any of the parameters

$$
\begin{equation*}
\alpha_{0, \ldots, 0,2,0, \ldots, 0,1,0 \ldots, 0} \tag{3.1.6}
\end{equation*}
$$

are nonzero, then ϕ_{3} has the form of (3.1.3). If all of the parameters in (3.1.5) and (3.1.6) are zero, then ϕ_{3} has the form of (3.1.4). This completes the proof of Claim 3.1.1.

Three observations are needed to complete the proof of Lemma 3.1. First, if ϕ_{3} has the form of (3.1.2), then the change of basis $x_{1}^{*}=X^{*}-\phi_{1,0}$ puts ϕ_{3} into the form of (a) because

$$
\left(X^{*}-\phi_{1,0}\right)^{(3)}=X^{*(3)}-X^{*(2)} \phi_{1,0}+X^{*} \phi_{1,0}^{(2)}-\phi_{1,0}^{(3)}
$$

Second, if ϕ_{3} has the form of (3.1.3), then one may change the basis of U^{*} again and choose the new " x_{2}^{*} " to equal the old $\phi_{1,0}$. Third, if the characteristic of \boldsymbol{k} is not two, then any nonzero element of $D_{3} U^{*}$ of form (3.1.4) can be transformed into an element of $D_{3} U^{*}$ of form (3.1.3). In particular, an element of form (3.1.4) in which
$x_{1}^{*} x_{2}^{*} x_{3}^{*}$ actually appears becomes an element of form (3.1.3) if one uses the basis $x_{1}^{*}, y_{2}^{*}, x_{3}^{*}, \ldots, x_{d}^{*}$ for U^{*} with $x_{2}^{*}=y_{2}^{*}+x_{1}^{*}$ because

$$
x_{1}^{*} x_{1}^{*}=2 x_{1}^{*(2)}
$$

and this is a unit times $x_{1}^{*(2)}$ when the characteristic of \boldsymbol{k} is not two.
Lemma 3.2 ensures that we can record " $\phi_{2,0}$ " from Lemma 3.1.(a) in an efficient manner.

Lemma 3.2. Let U_{0} be a d_{0}-dimensional vector space over the field \boldsymbol{k} and $\phi_{2,0}$ be an element of $D_{2} U_{0}^{*}$. Let $p_{\phi_{2,0}}: U_{0} \rightarrow U_{0}^{*}$ be the homomorphism defined by $p_{\phi_{2,0}}(\ell)=\ell \phi_{2,0}$ and let r be the rank of $p_{\phi_{2,0}}$. Then there is a basis $\ell_{1}, \ldots, \ell_{d_{0}}$ for U_{0} and corresponding dual basis $\ell_{1}^{*}, \ldots, \ell_{d_{0}}^{*}$ for U_{0}^{*} such that $\phi_{2,0} \in D_{2}\left(\boldsymbol{k} \ell_{1}^{*} \oplus \ldots \oplus \boldsymbol{k} \ell_{r}^{*}\right)$. In particular, if $r=1$, then $\phi_{2,0}=a \ell_{1}^{*(2)}$ for some nonzero element a in \boldsymbol{k}; and if $r=2$, then

$$
\begin{equation*}
\phi_{2,0}=a \ell_{1}^{*(2)}+b \ell_{1}^{*} \ell_{2}^{*}+c \ell_{2}^{*(2)} \tag{3.2.1}
\end{equation*}
$$

for some elements a, b, c of \boldsymbol{k} with $a c-b^{2}$ not equal to zero.
Proof. Let $\ell_{1}, \ldots, \ell_{d_{0}}$ be a basis for U_{0} such that $\ell_{1} \phi_{2,0}, \ldots, \ell_{r} \phi_{2,0}$ is a basis for the image of $p_{\phi_{2,0}}$ and $\ell_{r+1}, \ldots, \ell_{d_{0}}$ are in $\operatorname{ker} p_{\phi_{2,0}}$. Let $\ell_{1}^{*}, \ldots, \ell_{d_{0}}^{*}$ be the corresponding dual basis for U_{0}^{*}. Write $\phi_{2,0}$ in terms of the basis

$$
\left\{\ell_{1}^{*\left(i_{1}\right)} \ldots \ell_{d_{0}}^{*\left(i_{d_{0}}\right)} \mid \sum_{j} i_{j}=2\right\}
$$

for $D_{2} U_{0}^{*}$. The hypothesis that $\ell_{h} \phi_{2,0}=0$ for $r+1 \leq h \leq 3$ ensures that $\phi_{2,0}$ is in $D_{2}\left(\boldsymbol{k} \ell_{1}^{*} \oplus \ldots \oplus \boldsymbol{k} \ell_{r}^{*}\right)$. Furthermore, if $r=1$, then the coefficient of $\ell_{1}^{*(2)}$ can not be zero; and if $r=2$, then $\ell_{1} \phi_{2,0}$ and $\ell_{2} \phi_{2,0}$ must be linearly independent (hence, $\phi_{2,0}$ must have the form of (3.2.1) with $a c-b^{2} \neq 0$.)

Lemma 3.3 is redundant in the sense that the assertion is a consequence of Lemma 3.2 when $r=2$. On the other hand, the constructive nature of the argument makes this statement a valuable addition to one's tool bag.

Lemma 3.3. Let \boldsymbol{k} be a field, U_{0}^{*} be a two-dimensional vector space over \boldsymbol{k}, and $\phi_{2} \in D_{2} U_{0}^{*}$. If $\operatorname{dim}\left\{\ell \phi_{2} \mid \ell \in U_{0}\right\}$ is at most one, then there is a basis z^{*}, w^{*} for U_{0}^{*} such that $\phi_{2}=a z^{*(2)}$ for some $a \in \boldsymbol{k}$.

Proof. Let Z^{*}, W^{*} be a basis for U_{0}^{*} and Z, W be the corresponding basis for U_{0}. Write $\phi_{2}=a Z^{*(2)}+b Z^{*} W^{*}+c W^{*(2)}$ for some $a, b, c \in \boldsymbol{k}$. The hypothesis ensures that

$$
Z \phi_{2}=a Z^{*}+b W^{*} \quad \text { and } \quad W \phi_{2}=b Z^{*}+c W^{*}
$$

are linearly dependent. It follows that $a c=b^{2}$.

If a, b, and c are all zero, then the conclusion holds automatically. Henceforth, we assume that at least one of the parameters a, b, or c is nonzero; so, in particular, a or c is nonzero. Without loss of generality, we assume $a \neq 0$. In this case,

$$
a Z^{*(2)}+b Z^{*} W^{*}+c W^{*(2)}=a\left(Z^{*(2)}+\frac{b}{a} Z^{*} W^{*}+\frac{b^{2}}{a^{2}} W^{*(2)}\right)=a\left(Z^{*}+\frac{b}{a} W^{*}\right)^{(2)}
$$

because $\frac{b^{2}}{a^{2}}=\frac{c}{a}$. At this point, we rename $z^{*}=Z^{*}+\frac{b}{a} W^{*}$ and $w^{*}=W^{*}$. The claim is established.
3.4. The proof of Lemma 2.11. There are many cases depending upon the form of ϕ_{3} in the sense of Lemma 3.1.

If ϕ_{3} has the form of Lemma 3.1.(a), then let r be the rank of $p_{\phi_{2,0}}$ as described in Lemma 3.2. Of course, $0 \leq r \leq 3$. If $r=2$, then Lemma 2.11 is established in Proposition 4.1; if $r=1$, then Lemma 2.11 is established in Proposition 5.1; and if r is either 0 or 3, then Lemma 2.11 is established in Lemma 5.3.

If ϕ_{3} has the form of Lemma 3.1.(b), then there are two cases as described in 6.3. Case 1 of 6.3 is established in Proposition 7.1 and Case 2 is established in Proposition 6.4.

If ϕ_{3} has form of Lemma 3.1.(c), then \boldsymbol{k} has characteristic two and

$$
\phi_{3}=a y^{*} z^{*} w^{*}+b x^{*} z^{*} w^{*}+c x^{*} y^{*} w^{*}+d x^{*} y^{*} z^{*}
$$

for some parameters a, b, c, d from k. If $\ell=a x^{*}+b y^{*}+c z^{*}+d w^{*}$, then

$$
\ell \phi_{3}=2\left(a b z^{*} w^{*}+a c y^{*} w^{*}+a d y^{*} z^{*}+b c x^{*} w^{*}+b d x^{*} z^{*}+c d x^{*} y^{*}\right)=0 .
$$

Thus, $\ell \phi_{3}=0$ for some nonzero $\ell \in U$. In this case, Lemma 2.11 makes no assertion about $\Gamma_{\phi_{3}}$.

4. The Macaulay inverse system has a Cubic term and $r=2$.

We prove Lemma 2.11 when ϕ_{3} has the form of Lemma 3.1.(a), with $r=2$, in the sense of Lemma 3.2. This means that, in the language of Data 2.3, there is a basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*} so that $\phi_{3}=x^{*(3)}+\phi_{2,0} x^{*}+\phi_{3,0}$ with $\phi_{2,0} \in D_{2} \boldsymbol{k}\left(z^{*}, w^{*}\right)$, $\phi_{3,0} \in D_{3} \boldsymbol{k}\left(y^{*}, z^{*}, w^{*}\right)$, and $z \phi_{2,0}$ and $w \phi_{2,0}$ linearly independent. In particular, the basis elements $x^{*(2)} y^{*}, x^{*(2)} z^{*}, x^{*(2)} w^{*}, x^{*} y^{*(2)}, x^{*} y^{*} z^{*}$, and $x^{*} y^{*} w^{*}$ of $D_{3} U^{*}$ all appear in ϕ_{3} with coefficient zero.

Proposition 4.1. Let P_{0} be a domain, U be a free P_{0}-module of rank four with dual module $U^{*}=\operatorname{Hom}_{P_{0}}\left(U, P_{0}\right), x, y, z, w$ be a basis for U with dual basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*}. Let $\phi_{3} \in D_{3} U^{*}$ have the form

$$
\phi_{3}=\left\{\begin{array}{l}
x^{*(3)}+a x^{*} z^{*(2)}+b x^{*} z^{*} w^{*}+c x^{*} w^{*(2)}+d y^{*} z^{*(2)} \tag{4.1.1}\\
+e y^{*} z^{*} w^{*}+f y^{*} w^{*(2)}+g y^{*(2)} z^{*}+h y^{*(2)} w^{*}+i y^{*(3)} \\
+j z^{*(3)}+k z^{*(2)} w^{*}+l z^{*} w^{*(2)}+m w^{*(3)}
\end{array}\right.
$$

for elements a, \ldots, m of P_{0}. Assume that
(a) $a c-b^{2} \neq 0$ in P_{0},
(b) $\ell \phi_{3} \neq 0$ for all nonzero ℓ in U, and
(c) $\Gamma_{\phi_{3}}=0$.

Then 2 is equal to 0 in P_{0}, and, after a change of basis, $\phi_{3}=\alpha X^{*(3)}+Y^{*} Z^{*} W^{*}$ for some basis X^{*}, Y^{*}, Z^{*} of U^{*} and some nonzero $\alpha \in P_{0}$.

Proof. Let ω_{U} and $\omega_{U^{*}}$ represent the bases $x \wedge y \wedge z \wedge w$ and $x^{*} \wedge y^{*} \wedge z^{*} \wedge w^{*}$ of $\wedge^{4} U$ and $\wedge^{4} U^{*}$, respectively.

Claim 4.1.2. The parameters g, h, and i are zero.
Proof of Claim 4.1.2. We first compute

$$
\begin{align*}
\Gamma_{\phi_{3}}\left(x^{(3)} y \otimes \omega_{U}\right) & =i\left(a c-b^{2}\right) \omega_{U^{*}}, \\
\Gamma_{\phi_{3}}\left(x^{(3)} z \otimes \omega_{U}\right) & =g\left(a c-b^{2}\right) \omega_{U^{*}}, \text { and } \tag{4.1.3}\\
\Gamma_{\phi_{3}}\left(x^{(3)} w \otimes \omega_{U}\right) & =h\left(a c-b^{2}\right) \omega_{U^{*}}
\end{align*}
$$

Let ℓ be an arbitrary element of U. The expansion of $\Gamma_{\phi_{3}}\left(x^{(3)} \ell \otimes \omega_{U}\right)$ has four summands; but three of the summands involve a factor of $x y \phi_{3}=0$; consequently,

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x^{(3)} \ell \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y \ell \phi_{3} \wedge x z \phi_{3} \wedge x w \phi_{3}=x^{*} \wedge y \ell \phi_{3} \wedge\left(a z^{*}+b w^{*}\right) \wedge\left(b z^{*}+c w^{*}\right) \\
= & \left(a c-b^{2}\right) x^{*} \wedge y \ell \phi_{3} \wedge z^{*} \wedge w^{*} .
\end{aligned}
$$

Insert

$$
\begin{aligned}
y^{2} \phi_{3} & =\left(g z^{*}+h w^{*}+i y^{*}\right) \\
y z \phi_{3} & =\left(d z^{*}+e w^{*}+g y^{*}\right) \\
y w \phi_{3} & =\left(e z^{*}+f w^{*}+h y^{*}\right)
\end{aligned}
$$

into the calculation of $\Gamma_{\phi_{3}}\left(x^{(3)} \ell \otimes \omega_{U}\right)$ in order to obtain (4.1.3). Combine the hypotheses that $\Gamma_{\phi_{3}}$ is identically zero, but $a c-b^{2}$ is nonzero in the domain P_{0} to conclude that $g=h=i=0$. This completes the proof of Claim 4.1.2.

Claim 4.1.4. The parameter d is zero.

Proof of Claim 4.1.4. We first compute that if $g=h=i=0$, then

$$
\begin{align*}
\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right) & =\left(-c d^{2}+2 b d e-a e^{2}\right) \omega_{U^{*}} \tag{4.1.5}\\
\Gamma_{\phi_{3}}\left(z^{(4)} \otimes \omega_{U}\right) & =(a e-b d)^{2} \omega_{U^{*}}
\end{align*}
$$

The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right)$ consists of six summands; four of the summands have a factor of $x y \phi_{3}=0$ or $x z \phi_{3} \wedge x z \phi_{3}=0$. It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y z \phi_{3} \wedge x z \phi_{3} \wedge z w \phi_{3}+x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge x w \phi_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{r}
x^{*} \wedge\left(d z^{*}+e w^{*}\right) \wedge\left(a z^{*}+b w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \\
+x^{*} \wedge\left(d z^{*}+e w^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(b z^{*}+c w^{*}\right)
\end{array}\right. \\
& =(e(b d-a e)-d(c d-e b)) \omega_{U^{*}} \\
& =\left(-c d^{2}+2 b d e-a e^{2}\right) \omega_{U^{*}} .
\end{aligned}
$$

Also, one computes

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(z^{(4)} \otimes \omega_{U}\right) \\
= & x z \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3} \\
= & \left(a z^{*}+b w^{*}\right) \wedge\left(d z^{*}+e w^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \\
= & (a e-b d)\left(z^{*} \wedge w^{*}\right) \wedge(a e-b d)\left(x^{*} \wedge y^{*}\right) \\
= & (a e-b d)^{2} \omega_{U^{*}} .
\end{aligned}
$$

Both formulas of (4.1.5) have been established. The hypothesis that $\Gamma_{\phi_{3}}=0$ ensures that

$$
0=-c d^{2}+2 b d e-a e^{2} \quad \text { and } \quad 0=(a e-b d)^{2}
$$

It follows that

$$
0=a\left(-c d^{2}+2 b d e-a e^{2}\right)+(a e-b d)^{2}=d^{2}\left(b^{2}-a c\right)
$$

The ring P_{0} is a domain and $b^{2}-a c$ is not zero. We conclude that $d=0$. This completes the proof of Claim 4.1.4.

In Lemma 4.2 we prove that if $d=g=h=i=0$, then

$$
\begin{align*}
\Gamma_{\phi_{3}}\left(x z^{(3)} \otimes \omega_{U}\right) & =-e^{2} j \omega_{U^{*}}, \tag{4.1.6}\\
\Gamma_{\phi_{3}}\left(x y z w \otimes \omega_{U}\right) & =2 e^{3} \omega_{U^{*}}, \tag{4.1.7}\\
\Gamma_{\phi_{3}}\left(x z^{(2)} w \otimes \omega_{U}\right) & =\left(e^{2} k-2 e f j\right) \omega_{U^{*}}, \tag{4.1.8}\\
\Gamma_{\phi_{3}}\left(x^{(2)} w^{(2)} \otimes \omega_{U}\right) & =\left(-c e^{2}+2 b e f-a f^{2}\right) \omega_{U^{*}}, \tag{4.1.9}\\
\Gamma_{\phi_{3}}\left(x y w^{(2)} \otimes \omega_{U}\right) & =e^{2} f \omega_{U^{*}}, \tag{4.1.10}\\
\Gamma_{\phi_{3}}\left(x z w^{(2)} \otimes \omega_{U}\right) & =\left(e^{2} l-j f^{2}\right) \omega_{U^{*}}, \tag{4.1.11}\\
\Gamma_{\phi_{3}}\left(z^{(2)} w^{(2)} \otimes \omega_{U}\right) & =\left(-2 a c e^{2}+2 a b e f+a^{2} f^{2}\right) \omega_{U^{*}}, \tag{4.1.12}\\
\Gamma_{\phi_{3}}\left(x w^{(3)} \otimes \omega_{U}\right) & =\left(-f^{2} k+2 e f l-e^{2} m\right) \omega_{U^{*}}, \text { and } \tag{4.1.13}\\
\Gamma_{\phi_{3}}\left(w^{(4)} \otimes \omega_{U}\right) & =(b f-c e)^{2} \omega_{U^{*}} . \tag{4.1.14}
\end{align*}
$$

Claim 4.1.15. The following assertions hold:
(a) $a e=0$,
(b) $e j=0$,
(c) $2 e=0$,
(d) $e k=0$,
(e) $c e^{2}+a f^{2}=0$,
(f) $e f=0$,
(g) $-f^{2} j+e^{2} \ell=0$,
(h) $a f=0$,
(i) $-f^{2} k-e^{2} m=0$, and
(j) $c e-b f=0$.

Proof of Claim 4.1.15. In the proof of Claim 4.1.4, we saw that $(a e-b d)^{2}=0$ and $d=0$. The ring P_{0} is a domain. It follows that $a e=0$. Assertion (b) is a consequence of (4.1.6) and the hypothesis that P_{0} is a domain; (c) follows from (4.1.7); (d) from (4.1.8) and (c); (e) from (4.1.9) and (c); (f) from (4.1.10); (g) from (4.1.11); (h) from (4.1.12) and (c); (i) from (4.1.13) and (c); and (j) from (4.1.14). This completes the proof of Claim 4.1.15.

Claim 4.1.16. The parameter e is not equal to zero.
Proof of Claim 4.1.16. This proof is by contradiction: suppose $e=0$. There are two cases: either $f=0$ or $f \neq 0$.

If $f=0$, then, $d=e=f=g=h=i=0, \phi_{3}$ is equal to

$$
x^{*(3)}+a x^{*} z^{*(2)}+b x^{*} z^{*} w^{*}+c x^{*} w^{*(2)}+j z^{*(3)}+k z^{*(2)} w^{*}+l z^{*} w^{*(2)}+m w^{*(3)},
$$

and $y \phi_{3}=0$, which violates the hypothesis that $\ell \phi_{3}$ is nonzero for all nonzero ℓ in U.

If $e=0$ and $f \neq 0$, then, according to Claim 4.1.15, $a f=b f=0$. Thus,

$$
a=b=0 \text {; }
$$

however, the ambient hypothesis guarantees that $b^{2}-a c \neq 0$. This completes the proof of Claim 4.1.16.

Use the fact that $e \neq 0$, together with Claims 4.1.15, 4.1.4, and 4.1.2 to see that

$$
2=a=c=d=f=g=h=i=j=k=l=m=0 .
$$

In this case two is equal to zero in P_{0} and

$$
\phi_{3}=x^{*(3)}+b x^{*} z^{*} w^{*}+e y^{*} z^{*} w^{*}=x^{*(3)}+\left(b x^{*}+e y^{*}\right) z^{*} w^{*},
$$

which has the form $\phi_{3}=X^{*(3)}+Y^{*} Z^{*} W^{*}$ for some basis $X^{*}, Y^{*}, Z^{*}, W^{*}$ of U^{*}.
Lemma 4.2. If ϕ_{3} is given in (4.1.1) with $d=g=h=i=0$, then the assertions of (4.1.6) to (4.1.14) all hold.

Proof. We prove (4.1.6). The expansion of $\Gamma_{\phi_{3}}\left(x z^{(3)} \otimes \omega_{U}\right)$ consists of four summands. Three of the summands contain a factor of $x y \phi_{3}=0$, or $x z \phi_{3} \wedge x z \phi_{3}=0$, or

$$
\begin{equation*}
\bigwedge^{3} \boldsymbol{k}\left(x w \phi_{3}, y z \phi_{3}, x z \phi_{3}, y w \phi_{3}\right) \subseteq \bigwedge^{3}\left(P_{0} z^{*} \oplus P_{0} w^{*}\right)=0 \tag{4.2.1}
\end{equation*}
$$

It follows that

$$
\Gamma_{\phi_{3}}\left(x z^{(3)} \otimes \omega_{U}\right)=x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3}
$$

$$
\begin{aligned}
& =x^{*} \wedge e w^{*} \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \\
& =x^{*} \wedge e w^{*} \wedge j z^{*} \wedge e y^{*}=-e^{2} j \omega_{U^{*}}
\end{aligned}
$$

We prove (4.1.7). The expansion of $\Gamma_{\phi_{3}}\left(x y z w \otimes \omega_{U}\right)$ consists of twenty-four summands. Twenty-two of the summands have a factor of

$$
\begin{gathered}
y^{2} \phi_{3}=0, x y \phi_{3}=0, \quad y z \phi_{3} \wedge y z \phi_{3}=0, \quad x z \phi_{3} \wedge x z \phi_{3}=0, x w \phi_{3} \wedge x w \phi_{3}=0, \text { or } \\
y w \phi_{3} \wedge y w \phi_{3}, \text { or }(4.2 .1)
\end{gathered}
$$

The other two summands are equal. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x y z w \otimes \omega_{U}\right) & =2 x^{2} \phi_{3} \wedge y w \phi_{3} \wedge y z \phi_{3} \wedge z w \phi_{3} \\
& =2 x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge e w^{*} \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \\
& =2 x^{*} \wedge e z^{*} \wedge e w^{*} \wedge e y^{*} \\
& =2 e^{3} \omega_{U^{*}}
\end{aligned}
$$

We prove (4.1.8). The expansion of $\Gamma_{\phi_{3}}\left(x z^{(2)} w \otimes \omega_{U}\right)$ consists of twelve summands. Ten of the summands contain a factor of
$x y \phi_{3}=0, \quad z w \phi_{3} \wedge z w \phi_{3}=0, \quad x z \phi_{3} \wedge x z \phi_{3}=0, \quad x w \phi_{3} \wedge x w \phi_{3}=0, \quad$ (4.2.1), or

$$
\begin{equation*}
\bigwedge^{4} \boldsymbol{k}\left(x z \phi_{3}, y w \phi_{3}, z^{2} \phi_{3}, x w \phi_{3}\right) \subseteq \bigwedge^{4}\left(P_{0} x^{*} \oplus P_{0} z^{*} \oplus P_{0} w^{*}\right)=0 \tag{4.2.2}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x z^{(2)} w \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3}+x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge w^{2} \phi_{3} \\
= & \left\{\begin{aligned}
x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \\
+x^{*} \wedge e w^{*} \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right)
\end{aligned}\right. \\
= & \left(e^{2} k-2 e f j\right) \omega_{U^{*}} .
\end{aligned}
$$

We prove (4.1.9). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} w^{(2)} \otimes \omega_{U}\right)$ consists of six summands. Four of the summands have a factor of $x y \phi_{3}=0$ or $x w \phi_{3} \wedge x w \phi_{3}=0$. Thus,

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x^{(2)} w^{(2)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y w \phi_{3} \wedge x z \phi_{3} \wedge w^{2} \phi_{3}+x^{2} \phi_{3} \wedge y w \phi_{3} \wedge z w \phi_{3} \wedge x w \phi_{3} \\
= & \left\{\begin{array}{c}
x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(a z^{*}+b w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right) \\
+x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \wedge\left(b z^{*}+c w^{*}\right)
\end{array}\right. \\
= & (f(e b-f a)-e(e c-b f)) \omega_{U^{*}}=\left(-c e^{2}+2 b e f-a f^{2}\right) \omega_{U^{*}}
\end{aligned}
$$

We prove (4.1.10). The expansion of $\Gamma_{\phi_{3}}\left(x y w^{(2)} \otimes \omega_{U}\right)$ consists of twelve summands. Eleven of the summands have a factor of

$$
y^{2} \phi_{3}=0, \quad y w \phi_{3} \wedge y w \phi_{3}=0, \quad x y \phi_{3}=0, \quad \text { or } \quad x w \phi_{3} \wedge x w \phi_{3}=0
$$

It follows that

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x y w^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y w \phi_{3} \wedge y z \phi_{3} \wedge w^{2} \phi_{3} \\
& =x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge e w^{*} \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right) \\
& =e^{2} f \omega_{U^{*}}
\end{aligned}
$$

We prove (4.1.11). The expansion of $\Gamma_{\phi_{3}}\left(x z w^{(2)} \otimes \omega_{U}\right)$ consists of twelve summands. Ten of the summands have a factor of
$x y \phi_{3}=0, \quad z w \phi_{3} \wedge z w \phi_{3}=0, \quad x z \phi_{3} \wedge x z \phi_{3}=0, \quad x w \phi_{3} \wedge x w \phi_{3}=0 \quad$ or \quad (4.2.1).
It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x z w^{(2)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z w \phi_{3} \wedge w^{2} \phi_{3}+x^{2} \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge w^{2} \phi_{3} \\
= & \left\{\begin{array}{c}
x^{*} \wedge e w^{*} \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right) \\
+x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right)
\end{array}\right. \\
= & \left.(e(e l-f k)+f(e k-j f)) \omega_{U^{*}}=\left(e^{2} \ell-j f^{2}\right) \omega\right) U^{*} .
\end{aligned}
$$

We prove (4.1.12). The expansion of $\Gamma_{\phi_{3}}\left(z^{(2)} w^{(2)} \otimes \omega_{U}\right)$ consists of six summands. Two of the summands have a factor of $z w \phi_{3} \wedge z w \phi_{3}=0$. It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(z^{(2)} w^{(2)} \otimes \omega_{U}\right) \\
&=\left\{\begin{array}{c}
x z \phi_{3} \wedge y z \phi_{3} \wedge z w \phi_{3} \wedge w^{2} \phi_{3} \\
+x z \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge w^{2} \phi_{3} \\
+x w \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge w^{2} \phi_{3} \\
+x w \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3}
\end{array}\right. \\
&=\left\{\begin{array}{l}
\left(a z^{*}+b w^{*}\right) \wedge e w^{*} \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right) \\
+\left(a z^{*}+b w^{*}\right) \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right) \\
+\left(b z^{*}+c w^{*}\right) \wedge e w^{*} \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right) \\
+\left(b z^{*}+c w^{*}\right) \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(a x^{*}+j z^{*}+k w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right)
\end{array}\right. \\
&=\left(\begin{array}{ll}
a e(b f-e c)+a f(a f-b e)+a f b e+a e(b f-c e)) \omega_{U^{*}}
\end{array}\right. \\
&=\left.\left(2 a b e f-2 a c e^{2}+a^{2} f^{2}\right) \omega\right) U^{*} .
\end{aligned}
$$

We prove (4.1.13). The expansion of $\Gamma_{\phi_{3}}\left(x w^{(3)} \otimes \omega_{U}\right)$ consists of four summands. Three of the summands have a factor of $x w \phi_{3} \wedge x w \phi_{3}=0, x y \phi_{3}=0$, or (4.2.1). It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x w^{(3)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y w \phi_{3} \wedge z w \phi_{3} \wedge w^{2} \phi_{3} \\
= & x^{*} \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
0 & e & f \\
e & k & l \\
f & l & m
\end{array}\right| \omega_{U^{*}} \\
& =\left(-f^{2} k+2 e f l-e^{2} m\right) \omega_{U^{*}}
\end{aligned}
$$

We prove (4.1.14). Observe that

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(w^{(4)} \otimes \omega_{U}\right) & =x w \phi_{3} \wedge y w \phi_{3} \wedge z w \phi_{3} \wedge w^{2} \phi_{3} \\
& =\left\{\begin{array}{l}
\left(b z^{*}+c w^{*}\right) \wedge\left(e z^{*}+f w^{*}\right) \wedge\left(b x^{*}+e y^{*}+k z^{*}+l w^{*}\right) \\
\wedge\left(c x^{*}+f y^{*}+l z^{*}+m w^{*}\right)
\end{array}\right. \\
& =(b f-c e) z^{*} \wedge w^{*} \wedge(b f-c e) x^{*} \wedge y^{*} \\
& =(b f-c e)^{2} \omega_{U^{*}} .
\end{aligned}
$$

5. The Macaulay inverse system has a cubic term and $r=1$.

In this section $\phi_{3}=x^{*(3)}+\phi_{2,0} x^{*}+\phi_{3,0}$, with $\phi_{i, 0} \in D_{i} U_{0}^{*}$, and the rank of

$$
p_{\phi_{2,0}}: U_{0} \rightarrow U_{0}^{*}
$$

is equal to one, where $U^{*}=\boldsymbol{k} x^{*} \oplus U_{0}^{*}$ and $p_{\phi_{2,0}}\left(\ell_{0}\right)=\ell_{0}\left(\phi_{2,0}\right) \in U_{0}^{*}$, for $\ell_{0} \in U_{0}$. We prove that if $\ell \phi_{3}$ is nonzero for all nonzero ℓ in U, then $\Gamma_{\phi_{3}}$ is not identically zero (and, therefore, $A_{\phi_{3}}$ has the weak Lefschetz property by Lemma 2.9.)

According to Lemma 3.2, the hypothesis about the rank of $p_{\phi_{2,0}}$ ensures that there is a basis y^{*}, z^{*}, w^{*} for U^{*} such that $\phi_{2,0}=a z^{*(2)}$ for some unit a in \boldsymbol{k}. In particular, the basis elements $x^{*(2)} y^{*}, x^{*(2)} z^{*}, x^{*(2)} w^{*}, x^{*} y^{*(2)}, x^{*} y^{*} z^{*}, x^{*} y^{*} w^{*}, x^{*} z^{*(2)}, x^{*} z^{*} w^{*}$, and $x^{*} w^{*(2)}$ of $D_{3} U^{*}$ appear in ϕ_{3} with coefficient zero. Thus, ϕ_{3} has the form of (5.1.1).

Proposition 5.1. Let P_{0} be a domain, U be a free P_{0}-module of rank four with dual module $U^{*}=\operatorname{Hom}_{P_{0}}\left(U, P_{0}\right), x, y, z, w$ be a basis for U with dual basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*}. Let $\phi_{3} \in D_{3} U^{*}$ have the form

$$
\phi_{3}=\left\{\begin{array}{c}
x^{*(3)}+a x^{*} z^{*(2)}+d y^{*} z^{*(2)}+e y^{*} z^{*} w^{*} \tag{5.1.1}\\
+f y^{*} w^{*(2)}+g y^{*(2)} z^{*}+h y^{*(2)} w^{*}+i y^{*(3)} \\
+j z^{*(3)}+k z^{*(2)} w^{*}+l z^{*} w^{*(2)}+m w^{*(3)}
\end{array}\right.
$$

for parameters a, \ldots, m in P_{0}. Assume that
(a) $a \neq 0$ in P_{0} and
(b) $\ell \phi_{3} \neq 0$ for all nonzero ℓ in U.

Then $\Gamma_{\phi_{3}}$ is not identically zero.
Proof. The proof is by contradiction. We assume that $\Gamma_{\phi_{3}}$ is identically zero; we prove that $y \phi_{3}$ and $w \phi_{3}$ are linearly dependent. (Of course, this contradicts the
hypothesis that $\ell \phi_{3}$ is nonzero whenever ℓ is a nonzero element of U). We show that

$$
\begin{aligned}
y \phi_{3} & =g y^{*} z^{*}+h y^{*} w^{*}+i y^{*(2)}+d z^{*(2)}+e z^{*} w^{*}+f w^{*(2)} \quad \text { and } \\
w \phi_{3} & =e y^{*} z^{*}+f y^{*} w^{*}+h y^{*(2)}+k z^{*(2)}+l z^{*} w^{*}+m w^{*(2)}
\end{aligned}
$$

are linearly dependent by showing that the 2×2 minors of

$$
\left[\begin{array}{llllll}
g & h & i & d & e & f \tag{5.1.2}\\
e & f & h & k & \ell & m
\end{array}\right]
$$

are all zero. The 2×2 minors of (5.1.2) are

$$
\begin{aligned}
G_{0} & =f g-e h, & G_{1} & =g h-e i, \\
G_{3} & =g k-d e, & G_{4} & =h k-d f, \\
G_{6} & =g l-e^{2}, & G_{7} & =h l-e f, \\
G_{9} & =d l-e k, & G_{10} & =g m-e f, \\
G_{12} & =i m-f h, & G_{13} & =d m-f k, \text { and }
\end{aligned}
$$

Define F_{0}, \ldots, F_{8} to be the following elements of P_{0} :

$$
\begin{array}{ll}
F_{0}=f i-h^{2} & F_{1}=f g-2 e h+i l \\
F_{2}=g l-e^{2}, & F_{3}=i m-f h, \\
F_{4}=g m-2 e f+h l, & F_{5}=h m-f^{2}, \\
F_{6}=d e^{2}-d^{2} f+f g j-2 e h j+2 d h k-i k^{2}-d g l+i j l, & \\
F_{7}=g j l-e^{2} j+2 d e k-g k^{2}-d^{2} l, \text { and } & \\
F_{8}=g j m-2 e f j+e^{2} k+2 d f k-h k^{2}+h j l-g k l-d^{2} m . &
\end{array}
$$

Let ω_{U} and $\omega_{U^{*}}$ represent the bases $x \wedge y \wedge z \wedge w$ and $x^{*} \wedge y^{*} \wedge z^{*} \wedge w^{*}$ of $\wedge^{4} U$ and $\wedge^{4} U^{*}$, respectively. In Lemma 5.2 we show that

$$
\begin{align*}
\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right) & =a F_{0} \omega_{U^{*}}, \tag{5.1.3}\\
\Gamma_{\phi_{3}}\left(x^{(2)} y z \otimes \omega_{U}\right) & =a F_{1} \omega_{U^{*}}, \tag{5.1.4}\\
\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right) & =a F_{2} \omega_{U^{*}}, \tag{5.1.5}\\
\left.\Gamma_{\phi_{3}}\left(x^{(2)} y w\right) \otimes \omega_{U}\right) & =a F_{3} \omega_{U^{*}}, \tag{5.1.6}\\
\Gamma_{\phi_{3}}\left(x^{(2)} z w \otimes \omega_{U}\right) & =a F_{4} \omega_{U^{*}}, \tag{5.1.7}\\
\Gamma_{\phi_{3}}\left(x^{(2)} w^{(2)} \otimes \omega_{U}\right) & =a F_{5} \omega_{U^{*}}, \tag{5.1.8}\\
\Gamma_{\phi_{3}}\left(x y z^{(2)} \otimes \omega_{U}\right) & =F_{6} \omega_{U^{*}}, \tag{5.1.9}\\
\Gamma_{\phi_{3}}\left(x z^{(3)} \otimes \omega_{U}\right) & =F_{7} \omega_{U^{*}}, \text { and } \tag{5.1.10}\\
\Gamma_{\phi_{3}}\left(x z^{(2)} w \otimes \omega_{U}\right) & =F_{8} \omega_{U^{*}} . \tag{5.1.11}
\end{align*}
$$

The element a of the domain P_{0} is nonzero. We have assumed that $\Gamma_{\phi_{3}}$ is identically zero. We conclude that

$$
F_{0}=F_{1}=F_{2}=F_{3}=F_{4}=F_{5}=F_{6}=F_{7}=F_{8}=0
$$

Straightforward calculation show that

$$
\begin{array}{llrl}
G_{0}^{2} & =-g l F_{0}+f g F_{1}-h^{2} F_{2}, & & G_{1}^{2} \\
G_{2} & =-F_{0}, & F_{0}+g i F_{1}-i^{2} F_{2}, \\
G_{4}^{2} & =-k^{2} F_{0}+f\left(-d F_{2}+j F_{1}-F_{6}\right), & G_{5}^{2} & =-d^{2} F_{0}+i\left(-d F_{2}+j F_{1}-F_{6}\right), \\
G_{6} & =F_{2}, & G_{7}^{2} & =-f^{2} F_{2}+h l F_{4}-g l F_{5}, \\
G_{8}^{2} & =-g l F_{0}+i l F_{1}-h^{2} F_{2}, & G_{9}^{2}=-k^{2} F_{2}-l\left(F_{7}-j F_{2}\right), \\
G_{10}^{2} & =-f^{2} F_{2}+g m F_{4}-g l F_{5}, & G_{11}=F_{5}, \\
G_{12} & =F_{3}, & G_{13}^{2}=-k^{2} F_{5}-m\left(F_{8}-j F_{4}+k F_{2}\right), \text { and } \\
G_{14}^{2} & =-m^{2} F_{2}+\operatorname{lm}\left(F_{4}\right)-l^{2} F_{5} . & &
\end{array}
$$

It follows that $G_{i}=0$ for $0 \leq i \leq 14$; all 2×2 minors of (5.1.2) are zero; the elements $y \phi_{3}$ and $w \phi_{3}$ of U^{*} are linearly independent, and there exists a nonzero element ℓ of $\boldsymbol{k y} \oplus \boldsymbol{k} w \subseteq U$ with $\ell \phi_{3}=0$. This contradicts the ambient hypothesis. The proof is complete.

Lemma 5.2. In the notation of Proposition 5.1, the formulas (5.1.3) to (5.1.11) all hold.

Proof. We prove (5.1.3). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right)$ has six summands. Five of the summands have a factor of $x y \phi_{3}=0$ or $x w \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge x z \phi_{3} \wedge y w \phi_{3} \\
& =x^{*} \wedge\left(g z^{*}+h w^{*}+i y^{*}\right) \wedge a z^{*} \wedge\left(e z^{*}+f w^{*}+h y^{*}\right) \\
& =a\left(i f-h^{2}\right) \omega_{U^{*}}=a F_{0} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.4). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} y z \otimes \omega_{U}\right)$ has twelve summands. Ten of the summands have a factor of $x y \phi_{3}=0$ or $x w \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} y z \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge x z \phi_{3} \wedge z w \phi_{3}+x^{2} \phi_{3} \wedge y z \phi_{3} \wedge x z \phi_{3} \wedge y w \phi_{3} \\
& =\left\{\begin{array}{c}
x^{*} \wedge\left(g z^{*}+h w^{*}+i y^{*}\right) \wedge a z^{*} \wedge\left(e y^{*}+k z^{*}+l w^{*}\right) \\
+x^{*} \wedge\left(d z^{*}+e w^{*}+g y^{*}\right) \wedge a z^{*} \wedge\left(e z^{*}+f w^{*}+h y^{*}\right)
\end{array}\right. \\
& =(a(i l-e h)+a(g f-e h)) \omega_{U^{*}} \\
& =a(f g-2 e h+i l) \omega_{U^{*}}=a F_{1} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.5). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right)$ has six summands. Five of the summands have a factor of $x y \phi_{3}=0$ or $x w \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y z \phi_{3} \wedge x z \phi_{3} \wedge z w \phi_{3} \\
& =x^{*} \wedge\left(d z^{*}+e w^{*}+g y^{*}\right) \wedge a z^{*} \wedge\left(e y^{*}+k z^{*}+l w^{*}\right) \\
& =a\left(g l-e^{2}\right) \omega_{U^{*}}=a F_{2} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.6). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} y w \otimes \omega_{U}\right)$ has twelve summands. Eleven of the summands have a factor of $x y \phi_{3}=0, x w \phi_{3}=0$, or $y w \phi_{3} \wedge y w \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} y w \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge x z \phi_{3} \wedge w^{2} \phi_{3} \\
& =x^{*} \wedge\left(g z^{*}+h w^{*}+i y^{*}\right) \wedge a z^{*} \wedge\left(f y^{*}+l z^{*}+m w^{*}\right) \\
& =a(i m-f h) \omega_{U^{*}}=a F_{3} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.7). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z w \otimes \omega_{U}\right)$ has twelve summands. Ten of the summands have a factor of $x y \phi_{3}=0$ or $x w \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} z w \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y z \phi_{3} \wedge x z \phi_{3} \wedge w^{2} \phi_{3}+x^{2} \phi_{3} \wedge y w \phi_{3} \wedge x z \phi_{3} \wedge z w \phi_{3} \\
& =\left\{\begin{array}{r}
x^{*} \wedge\left(d z^{*}+e w^{*}+g y^{*}\right) \wedge a z^{*} \wedge\left(f y^{*}+l z^{*}+m w^{*}\right) \\
+x^{*} \wedge\left(e z^{*}+f w^{*}+h y^{*}\right) \wedge a z^{*} \wedge\left(e y^{*}+k z^{*}+l w^{*}\right)
\end{array}\right. \\
& =(a(g m-e f)+a(h l-e f)) \omega_{U^{*}} \\
& =a F_{4} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.8). The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} w^{(2)} \otimes \omega_{U}\right)$ has six summands. Five of the summands have a factor of $x y \phi_{3}=0$ or $x w \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} w^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y w \phi_{3} \wedge x z \phi_{3} \wedge w^{2} \phi_{3} \\
& =x^{*} \wedge\left(e z^{*}+f w^{*}+h y^{*}\right) \wedge a z^{*} \wedge\left(f y^{*}+l z^{*}+m w^{*}\right) \\
& =a\left(h m-f^{2}\right) \omega_{U^{*}} \\
& =a F_{5} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.9). The expansion of $\Gamma_{\phi_{3}}\left(x y z^{(2)} \otimes \omega_{U}\right)$ has twelve summands. Ten of the summands have a factor of $x y \phi_{3}=0, x w \phi_{3}=0, x z \phi_{3} \wedge x z \phi_{3}=0$, or $y z \phi_{3} \wedge y z \phi_{3}$. Thus,

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x y z^{(2)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3}+x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge y w \phi_{3} \\
= & \left\{\begin{aligned}
x^{*} \wedge\left(g z^{*}+h w^{*}+i y^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(e y^{*}+k z^{*}+l w^{*}\right) \\
+x^{*} \wedge\left(d z^{*}+e w^{*}+g y^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(e z^{*}+f w^{*}+h y^{*}\right)
\end{aligned}\right. \\
= & \left(\operatorname{det}\left[\begin{array}{lll}
i & g & h \\
d & j & k \\
e & k & l
\end{array}\right]+\operatorname{det}\left[\begin{array}{lll}
g & d & e \\
d & j & k \\
h & e & f
\end{array}\right]\right) \omega_{U^{*}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(d e^{2}-d^{2} f+f g j-2 e h j+2 d h k-i k^{2}-d g l+i j l\right) \omega_{U^{*}} \\
& =F_{6} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.10). The expansion of $\Gamma_{\phi_{3}}\left(x z^{(3)} \otimes \omega_{U}\right)$ has four summands. Three of the summands have a factor of $x y \phi_{3}=0, x w \phi_{3}=0$, or $x z \phi_{3} \wedge x z \phi_{3}=0$. Thus,

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x z^{(3)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3} \\
= & x^{*} \wedge\left(d z^{*}+e w^{*}+g y^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(e y^{*}+k z^{*}+l w^{*}\right) \\
= & \operatorname{det}\left[\begin{array}{lrr}
g & d & e \\
d & j & k \\
e & k & l
\end{array}\right] \omega_{U^{*}} \\
= & \left(-e^{2} j+2 d e k-g k^{2}-d^{2} l+g j l\right) \omega_{U^{*}} \\
= & F_{7} \omega_{U^{*}} .
\end{aligned}
$$

We prove (5.1.11). The expansion of $\Gamma_{\phi_{3}}\left(x z^{(2)} w \otimes \omega_{U}\right)$ has twelve summands. Ten of the summands have a factor of

$$
x y \phi_{3}=0, \quad x w \phi_{3}=0, \quad z w \phi_{3} \wedge z w \phi_{3}=0, \quad \text { or } \quad x z \phi_{3} \wedge x z \phi_{3}=0 .
$$

Thus,

$$
\left.\begin{array}{rl}
& \Gamma_{\phi_{3}}\left(x z^{(2)} w \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3}+x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge w^{2} \phi_{3} \\
= & \left\{\begin{aligned}
x^{*} \wedge\left(e z^{*}+f w^{*}+h y^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(e y^{*}+k z^{*}+l w^{*}\right) \\
+x^{*} \wedge\left(d z^{*}+e w^{*}+g y^{*}\right) \wedge\left(a x^{*}+d y^{*}+j z^{*}+k w^{*}\right) \wedge\left(f y^{*}+l z^{*}+m w^{*}\right)
\end{aligned}\right. \\
= & \left(\operatorname{det}\left[\begin{array}{lll}
h & e & f \\
d & j & k \\
e & k & l
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
g & d & e \\
d & j & k \\
f & l & m
\end{array}\right]\right) \omega_{U^{*}}
\end{array}\right]=\left(-2 e f j+e^{2} k+2 d f k-h k^{2}+h j l-g k l-d^{2} m+g j m\right) \omega_{U^{*}} .
$$

Lemma 5.3. Lemma 2.11 holds when ϕ_{3} has the form of Lemma 3.1.(a) and $r=0$ or $r=3$.

Proof. First we consider the case $r=0$. In this case, $\phi_{3}=x^{*(3)}+\phi_{3,0}$ with $\phi_{3,0} \in U_{0}^{*}$ and $\boldsymbol{k} x^{*} \oplus U_{0}^{*}=U^{*}$. Furthermore, either the characteristic of \boldsymbol{k} is not two; or else, the characteristic of \boldsymbol{k} is two but there does not exist a basis y^{*}, z^{*}, w^{*} for U_{0}^{*} with $\phi_{3,0}$ is equal to $y^{*} z^{*} w^{*}$.

Fix some basis y^{*}, z^{*}, w^{*} for U_{0}^{*}. Let x, y, z, w be the basis for U which is dual to the basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*}. Let
$\omega_{U_{0}^{*}}$ be the basis $y^{*} \wedge z^{*} \wedge w^{*}$ of $\wedge^{3} U_{0}^{*}$,
$\omega_{U_{0}}$ be the basis $y \wedge z \wedge w$ of $\wedge^{3} U_{0}$,
$\omega_{U^{*}}$ be the basis $x^{*} \wedge y^{*} \wedge z^{*} \wedge w^{*}$ of $\wedge^{4} U^{*}$, and ω_{U} be the basis $x \wedge y \wedge z \wedge w$ of $\wedge^{4} U$.

According to Lemma 8.2 there is an element $\theta \in D_{3} U_{0}$ so that $\Gamma_{\phi_{3,0}}\left(\theta \otimes \omega_{U_{0}}\right)=\omega_{U_{0}^{*}}$. The fact that $x \phi_{3,0}=0$ and $\ell x^{*(3)}=0$ for $\ell \in U_{0}$ ensures that

$$
\Gamma_{\phi_{3}}\left(x \theta \otimes \omega_{U}\right)=x^{2} \phi_{3} \wedge \Gamma_{\phi_{3,0} \otimes \omega_{U_{0}}}(\theta)=x^{*} \wedge \omega_{U_{0}^{*}}=\omega_{U^{*}} .
$$

Conclude that $\Gamma_{\phi_{3}} \neq 0$.
Now we consider the case $r=3$. In this case, $\phi_{3}=\alpha x^{*(3)}+x^{*} \phi_{2,0}+\phi_{3,0}$, with $\phi_{i, 0}$ in $D_{i} U_{0}^{*}$ and $\ell_{0} \phi_{2,0}$ not zero for $\ell_{0} \in U_{0}=\boldsymbol{k} y \oplus \boldsymbol{k} z \oplus \boldsymbol{k} w$. It follows that $y \phi_{2,0}, z \phi_{2,0}$, and $w \phi_{2,0}$ are linearly independent in U_{0}^{*}. Hence, $y \phi_{2,0} \wedge z \phi_{2,0} \wedge w \phi_{2,0}$ is nonzero in $\Lambda^{3} U_{0}^{*}$ and

$$
\Gamma_{\phi_{3}}\left(x^{4} \otimes \omega_{U}\right)=\alpha x^{*} \wedge y \phi_{2,0} \wedge z \phi_{2,0} \wedge w \phi_{2,0}
$$

is nonzero in $\wedge^{4} U^{*}$.

6. The Macaulay inverse system does not have a cubic term, one

CASE.

In this section ϕ_{3} does not have any terms of the form $\ell^{*(3)}$ with $\ell^{*} \in U^{*}$, but ϕ_{3} can be written in the form

$$
\phi_{3}=x^{*(2)} y^{*}+\phi_{2,0} x^{*}+\phi_{3,0}
$$

with $\phi_{i, 0} \in D_{i} U_{0}^{*}$, where $U^{*}=\boldsymbol{k} x^{*} \oplus U_{0}^{*}$ and y^{*} is a nonzero element of U_{0}^{*}. (This case can be avoided in most characteristics, but is necessary in characteristic three.) In Propositions 6.4 and 7.1 we prove that if $\ell \phi_{3}$ is nonzero for all nonzero ℓ in U, then $\Gamma_{\phi_{3}}$ is not identically zero (and, therefore, $A_{\phi_{3}}$ has the weak Lefschetz property by Lemma 2.9.) The proof of Propositions 6.4 and 7.1 proceed like the proof of Proposition 5.1: we assume that $\Gamma_{\phi_{3}}$ is identically zero and we exhibit a nonzero linear form ℓ in U with $\ell \phi_{3}=0$.

The hypothesis that $\Gamma_{\phi_{3}}$ is identically zero imposes further constraints on the form of ϕ_{3} that we identify before beginning the proof of Proposition 6.4.

Lemma 6.1. Let x^{*} and y^{*} be linearly independent elements in the four dimensional vector space U^{*} over the field \boldsymbol{k} and let

$$
\phi_{3}=x^{*(2)} y^{*}+\phi_{2,0} x^{*}+\phi_{3,0}
$$

be an element of $D_{3} U^{*}$ with $\phi_{i, 0} \in D_{i} U_{0}^{*}$ for $U^{*}=\boldsymbol{k} x^{*} \oplus U_{0}^{*}$ and $y^{*} \in U_{0}^{*}$. Assume that $\phi_{3,0}$ does not have any terms of the form $\ell^{*(3)}$ for $\ell^{*} \in U_{0}^{*}$. If $\Gamma_{\phi_{3}}$ is identically zero, then there exists a basis y^{*}, z^{*}, w^{*} for U_{0}^{*} such that
(i) $\phi_{2,0}$ is in the subspace of U_{0}^{*} spanned by $z^{*(2)}, y^{*(2)}, y^{*} z^{*}$, and $y^{*} w^{*}$, and
(ii) $\phi_{3,0}$ does not involve $z^{*} w^{*(2)}$.

Remark 6.2. Assertion (i) can also be written $\phi_{2,0}$ does not involve either $z^{*} w^{*}$ or $w^{*(2)}$ and assertion (ii) can also be written $\phi_{3,0}$ is in the subspace of $D_{3} U_{0}^{*}$ spanned by $y^{*(2)} z^{*}, y^{*(2)} w^{*}, y^{*} z^{*(2)}, y^{*} z^{*} w^{*}, y^{*} w^{*(2)}$, and $z^{*(2)} w^{*}$.

Cases 6.3. Once we prove Lemma 6.1, then there are two cases.
Case 1. The case where $\phi_{2,0}$ is in the subspace of U_{0}^{*} spanned by $y^{*(2)}, y^{*} z^{*}$, and $y^{*} w^{*}$ is treated in Proposition 7.1.
Case 2. The case where $\phi_{2,0}$ also involves $z^{*(2)}$ is treated in Proposition 6.4.

Proof. We prove (i). Let y^{*}, Z^{*}, W^{*} be any basis for U_{0}^{*}. We are given a, b, c in k with

$$
\phi_{3}=x^{*(2)} y^{*}+a x^{*} Z^{*(2)}+b x^{*} Z^{*} W^{*}+c x^{*} W^{*(2)}+\phi_{3}^{\prime}
$$

with ϕ_{3}^{\prime} in the subspace of $D_{3} U_{0}^{*}$ spanned by $x^{*} y^{*(2)}, x^{*} y^{*} Z^{*}, x^{*} y^{*} W^{*}, y^{*(2)} Z^{*}$, $y^{*(2)} W^{*}, y^{*} Z^{*(2)}, y^{*} Z^{*} W^{*}, y^{*} W^{*(2)}, Z^{*(2)} W^{*}$, and $Z^{*} W^{*(2)}$. Let ω_{U} and $\omega_{U^{*}}$ be the bases $x \wedge y \wedge Z \wedge W$ and $x^{*} \wedge y^{*} \wedge Z^{*} \wedge W^{*}$ of U and U^{*}, respectively. Observe that

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(4)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge x Z \phi_{3} \wedge x W \phi_{3} \\
& =y^{*} \wedge\left(x^{*}+\theta\right) \wedge\left(\alpha_{1} y^{*}+a Z^{*}+b W^{*}\right) \wedge\left(\alpha_{2} y^{*}+b Z^{*}+c W^{*}\right) \\
& =\left(a c-b^{2}\right) \omega_{U^{*}}
\end{aligned}
$$

for some $\theta \in U_{0}^{*}$ and some α_{1} and α_{2} in \boldsymbol{k}. The hypothesis that $\Gamma_{\phi_{3}}$ is identically zero guarantees that

$$
a c-b^{2}=0
$$

Apply Lemma 3.3 and choose a new basis z^{*}, w^{*} for $\boldsymbol{k} Z^{*} \oplus \boldsymbol{k} W^{*}$ so that

$$
a x^{*} Z^{*(2)}+b x^{*} Z^{*} W^{*}+c x^{*} W^{*(2)} \text { is in } k x^{*} z^{*(2)}
$$

We have established (i).
We prove (ii). At this point

$$
\phi_{3}=\left\{\begin{array}{l}
x^{*(2)} y^{*}+d x^{*} y^{*(2)}+e y^{*(2)} z^{*}+f y^{*(2)} w^{*} \tag{6.3.1}\\
+g x^{*} z^{*(2)}+h y^{*} z^{*(2)}+i z^{*(2)} w^{*}+k y^{*} w^{*(2)}+l z^{*} w^{*(2)} \\
+m x^{*} y^{*} z^{*}+n x^{*} y^{*} w^{*}+p y^{*} z^{*} w^{*}
\end{array}\right.
$$

for parameters d, \ldots, p from k. Let ω_{U} and $\omega_{U^{*}}$ be the bases $x \wedge y \wedge z \wedge w$ and $x^{*} \wedge y^{*} \wedge z^{*} \wedge w^{*}$ of U and U^{*}, respectively. The expansion of $\Gamma_{\phi_{3}}\left(x^{*(2)} w^{*(2)} \otimes \omega_{U}\right)$ involves six summands. Five of the summands have a factor of $x w \phi_{3} \wedge x w \phi_{3}=0$,

$$
x^{2} \phi_{3} \wedge x w \phi_{3} \subseteq \bigwedge^{2}\left(\boldsymbol{k} y^{*}\right)=0, \text { or } \bigwedge^{3} \boldsymbol{k}\left(x^{2} \phi_{3}, x z \phi_{3}, x w \phi_{3}, w^{2} \phi_{3}\right) \subseteq \bigwedge^{3}\left(\boldsymbol{k} y^{*} \oplus \boldsymbol{k} z^{*}\right)=0
$$

Thus,

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x^{*(2)} w^{*(2)} \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge x y \phi_{3} \wedge z w \phi_{3} \wedge w^{2} \phi_{3} \\
= & \left(y^{*} \wedge\left(x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(i z^{*}+l w^{*}+p y^{*}\right) \wedge\left(k y^{*}+l z^{*}\right)\right. \\
= & l^{2} \omega_{U^{*}} .
\end{aligned}
$$

The hypothesis that $\Gamma_{\phi_{3}}$ is identically zero guarantees that $l=0$; and this completes the proof of (ii).

We treat Case 2 of 6.3. The Macaulay inverse system for this case is the ϕ_{3} of (6.3.1) with l set equal to zero. We have recorded this Macaulay inverse system as (6.4.1).

Proposition 6.4. Let P_{0} be a domain, U be a free P_{0}-module of rank four with dual module $U^{*}=\operatorname{Hom}_{P_{0}}\left(U, P_{0}\right), x, y, z, w$ be a basis for U with dual basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*}. Let $\phi_{3} \in D_{3} U^{*}$ have the form

$$
\phi_{3}=\left\{\begin{array}{l}
a x^{*(2)} y^{*}+d x^{*} y^{*(2)}+e y^{*(2)} z^{*}+f y^{*(2)} w^{*} \tag{6.4.1}\\
+g x^{*} z^{*(2)}+h y^{*} z^{*(2)}+i z^{*(2)} w^{*}+k y^{*} w^{*(2)} \\
+m x^{*} y^{*} z^{*}+n x^{*} y^{*} w^{*}+p y^{*} z^{*} w^{*},
\end{array}\right.
$$

for parameters a, \ldots, p from P_{0}. Assume that
(a) $a \neq 0$ in P_{0},
(b) $g \neq 0$ in P_{0}, and
(c) $\ell \phi_{3} \neq 0$ for all nonzero ℓ in U.

Then $\Gamma_{\phi_{3}}$ is not identically zero.
Proof. The proof is by contradiction. We assume that $\Gamma_{\phi_{3}}$ is identically zero; we prove that the elements

$$
\begin{aligned}
x \phi_{3} & =a x^{*} y^{*}+d y^{*(2)}+m y^{*} z^{*}+n y^{*} w^{*}+g z^{*(2)} \text { and } \\
w \phi_{3} & =n x^{*} y^{*}+f y^{*(2)}+p y^{*} z^{*}+k y^{*} w^{*}+i z^{*(2)}
\end{aligned}
$$

of U^{*} are linearly dependent. We do this by showing that the 2×2 minors of the matrix

$$
\left[\begin{array}{lllll}
a & d & m & n & g \tag{6.4.2}\\
n & f & p & k & i
\end{array}\right]
$$

are all zero.
In Lemma 6.5 we calculate $\Gamma_{\phi_{3}}\left(-\otimes \omega_{U}\right)$ for five elements of $D_{3} U$. The assumption that $\Gamma_{\phi_{3}}$ is identically zero, together with the hypothesis that $a g \neq 0$ guarantees that $n^{2}-a k, a i-g n, i m-g p, g k-i n$, and

$$
\begin{equation*}
I_{0}=-a f^{2} g-d^{2} g k-a d h k+d k m^{2}+2 d f g n n+d h n^{2}-2 d m n p+a d p^{2} \tag{6.4.3}
\end{equation*}
$$

all are zero. In Lemma 6.6 we show that $d k-f n$ is also zero.

The entries a and g of matrix 6.4.2 are nonzero. We know that columns 1 and 4 are linearly dependent, as are columns 1 and 5, columns 3 and 5, columns 4 and 5, and columns 2 and 4 . If $n \neq 0$, then column 4 is a non-zero multiple of column 1 and therefore columns 1 and 2 are linearly dependent, indeed, in this case, column 1 is a basis for the column space of the matrix (6.4.2).

On the other hand, if $n=0$, then the fact that columns $1,3,4,5$ are all multiples of column 1 and n is the bottom entry of column 1 forces $n=p=i=k=0$. When $n=p=i=k=0$, then $\Gamma_{\phi_{3}}\left(x y^{(3)} \otimes \omega_{U}\right)=I_{0} \omega_{U^{*}}($ from Lemma 6.5) becomes $-a f^{2} g=0$. The parameters a and g are nonzero; hence $f=0$ and once again the matrix (6.4.2) has rank one.

Thus, in every case, $x \phi_{3}$ and $w \phi_{3}$ are linearly dependent and there is a nonzero linear form $\ell=\alpha x+\beta w$ with $\ell \phi_{3}=0$, which is a contradiction.

Lemma 6.5. Retain the notation of Proposition 6.4. Let ω_{U} and $\omega_{U^{*}}$ be the basis elements $x \wedge y \wedge z \wedge w$ and $x^{*} \wedge y^{*} \wedge z^{*} \wedge w^{*}$ of $\wedge^{4} U$ and $\wedge^{4} U^{*}$, respectively. Then the following statements hold:
(a) $\Gamma_{\phi_{3}}\left(x^{(3)} y \otimes \omega_{U}\right)=a g\left(n^{2}-a k\right) \omega_{U^{*}}$,
(b) $\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right)=(a i-g n)^{2} \omega_{U^{*}}$,
(c) $\Gamma_{\phi_{3}}\left(z^{(4)} \otimes \omega_{U}\right)=(i m-g p)^{2} \omega_{U^{*}}$,
(d) $\Gamma_{\phi_{3}}\left(z^{(2)} w^{(2)} \otimes \omega_{U}\right)=(g k-i n)^{2} \omega_{U^{*}}$, and
(e) $\Gamma_{\phi_{3}}\left(x y^{(3)} \otimes \omega_{U}\right)=I_{0} \omega_{U^{*}}$, where I_{0} is given in (6.4.3).

Proof. (a) The expansion of $\Gamma_{\phi_{3}}\left(x^{(3)} y \otimes \omega_{U}\right)$ has four summands. Three of the summands have a factor of $x y \phi_{3} \wedge x y \phi_{3}=0$ or $x^{2} \phi_{3} \wedge x w \phi_{3} \in \Lambda^{2} P_{0} y^{*}=0$. It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x^{(3)} y \otimes \omega_{U}\right) \\
= & x^{2} \phi_{3} \wedge x y \phi_{3} \wedge x z \phi_{3} \wedge y w \phi_{3} \\
= & a y^{*} \wedge\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(g z^{*}+m y^{*}\right) \wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right) \\
= & -a g\left(a k-n^{2}\right) \omega_{U^{*}} .
\end{aligned}
$$

(b) The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right)$ has six summands. Four of the summands contain a factor of $x z \phi_{3} \wedge x z \phi_{3}=0$, or $x^{2} \phi_{3} \wedge x w \phi_{3} \in \Lambda^{2} \boldsymbol{k} y^{*}=0$, or

$$
x^{2} \phi_{3} \wedge x z \phi_{3} \wedge z w \phi_{3} \in \bigwedge^{3}\left(\boldsymbol{k} y^{*} \oplus \boldsymbol{k} z^{*}\right)=0
$$

It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right) \\
= & \left\{\begin{array}{r}
x^{2} \phi_{3} \wedge x y \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3} \\
+x z \phi_{3} \wedge x y \phi_{3} \wedge z^{2} \phi_{3} \wedge x w \phi_{3}
\end{array}\right. \\
= & \left\{\begin{array}{c}
a y^{*} \wedge\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(g x^{*}+h y^{*}+i w^{*}\right) \wedge\left(i z^{*}+p y^{*}\right) \\
+\left(g z^{*}+m y^{*}\right) \wedge\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(g x^{*}+h y^{*}+i w^{*}\right) \wedge n y^{*}
\end{array}\right.
\end{aligned}
$$

$$
=(a i(a i-n g)-g n(a i-g n)) \omega_{U^{*}}=(a i-n g)^{2} \omega_{U^{*}} .
$$

(c) One computes that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(z^{(4)} \otimes \omega_{U}\right) \\
= & x z \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3} \\
= & \left(g z^{*}+m y^{*}\right) \wedge\left(e y^{*}+h z^{*}+m x^{*}+p w^{*}\right) \wedge\left(g x^{*}+h y^{*}+i w^{*}\right) \wedge\left(i z^{*}+p y^{*}\right) \\
= & (m i-g p)^{2} \omega_{U^{*}} .
\end{aligned}
$$

(d) The expansion of $\Gamma_{\phi_{3}}\left(z^{(2)} w^{(2)} \otimes \omega_{U}\right)$ has six summands. Four of the summands have a factor of $z w \phi_{3} \wedge z w \phi_{3}=0$, or

$$
x z \phi_{3} \wedge z w \phi_{3} \wedge w^{2} \phi_{3} \in \Lambda^{3}\left(\boldsymbol{k} y^{*} \oplus \boldsymbol{k} z^{*}\right)=0, \quad \text { or } \quad x w \phi_{3} \wedge w^{2} \phi_{3} \in \Lambda^{2} \boldsymbol{k} y^{*}=0
$$

It follows that

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(z^{(2)} w^{(2)} \otimes \omega_{U}\right) \\
& =x z \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge w^{2} \phi_{3}+x w \phi_{3} \wedge y w \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3} \\
& =\left\{\begin{array}{r}
\left(g z^{*}+m y^{*}\right) \wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right) \wedge\left(g x^{*}+h y^{*}+i w^{*}\right) \wedge k y^{*} \\
+n y^{*} \wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right) \wedge\left(g x^{*}+h y^{*}+i w^{*}\right) \wedge\left(i z^{*}+p y^{*}\right)
\end{array}\right. \\
& =-k g(n i-g k) \omega_{U^{*}}+n i(n i-g k) \omega_{U^{*}} \\
& =(n i-g k)^{2} \omega_{U^{*}} .
\end{aligned}
$$

(e) The expansion of $\Gamma_{\phi_{3}}\left(x y^{(3)} \otimes \omega_{U}\right)$ has four summands. One of the summands has a factor of $x y \phi_{3} \wedge x y \phi_{3}=0$. Thus,

$$
\begin{aligned}
& \Gamma_{\phi_{3}}\left(x y^{(3)} \otimes \omega_{U}\right) \\
= & \left\{\begin{array}{l}
x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge y z \phi_{3} \wedge y w \phi_{3} \\
+x y \phi_{3} \wedge y^{2} \phi_{3} \wedge x z \phi_{3} \wedge y w \phi_{3} \\
+x y \phi_{3} \wedge y^{2} \phi_{3} \wedge y z \phi_{3} \wedge x w \phi_{3}
\end{array}\right. \\
= & \left\{\begin{array}{l}
\left\{\begin{array}{l}
a y^{*} \wedge\left(d x^{*}+e z^{*}+f w^{*}\right) \wedge\left(e y^{*}+h z^{*}+m x^{*}+p w^{*}\right) \\
\wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right)
\end{array}\right. \\
+\left\{\begin{array}{l}
\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(d x^{*}+e z^{*}+f w^{*}\right) \wedge\left(g z^{*}+m y^{*}\right) \\
\wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right)
\end{array}\right. \\
+\left\{\begin{array}{l}
\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(d x^{*}+e z^{*}+f w^{*}\right) \\
\wedge\left(e y^{*}+h z^{*}+m x^{*}+p w^{*}\right) \wedge n y^{*}
\end{array}\right. \\
= \\
=\left(\begin{array}{lll}
-a \operatorname{det}\left[\begin{array}{lll}
d & e & f \\
m & h & p \\
n & p & k
\end{array}\right]+\operatorname{det}\left[\begin{array}{llll}
a & d & m & n \\
d & 0 & e & f \\
0 & m & g & 0 \\
n & f & p & k
\end{array}\right]+n \operatorname{det}\left[\begin{array}{ccc}
a & m & n \\
d & e & f \\
m & h & p
\end{array}\right]
\end{array}\right) \omega_{U^{*}}
\end{array}\right. \\
= & \left(-a f^{2} g-d^{2} g k-a d h k+d k m^{2}+2 d f g n+d h n^{2}-2 d m n p+a d p^{2}\right) \omega_{U^{*}}
\end{aligned}
$$

$$
=I_{0} \omega_{U^{*}} .
$$

Lemma 6.6. The parameters of Proposition 6.4 satisfy

$$
a g^{2}(d k-f n)^{2} \in\left(n^{2}-a k, a i-g n, i m-g p\right) .
$$

Proof. Recall that I_{0}, from (6.4.3), is equal to zero. A straightforward calculation shows that

$$
\begin{aligned}
& -g n^{2} I_{0} \\
& +\left(-d^{2} g^{2} k+2 d f g^{2} n-d i m^{2} n+d g h n^{2}\right)\left(n^{2}-a k\right) \\
& +\left(-d k m^{2} n+d m n^{2} p\right)(a i-g n) \\
& +\left(d m n^{3}-a d n^{2} p\right)(i m-g p)
\end{aligned}
$$

is equal to $a g^{2}(d k-f n)^{2}$.

7. The Macaulay inverse system does not have a cubic term, the OTHER CASE.

We treat Case 1 from 6.3. The statement is the same as the statement of Proposition 6.4, except now " g " is equal to zero.

Proposition 7.1. Let P_{0} be a domain, U be a free P_{0}-module of rank four with dual module $U^{*}=\operatorname{Hom}_{P_{0}}\left(U, P_{0}\right), x, y, z, w$ be a basis for U with dual basis $x^{*}, y^{*}, z^{*}, w^{*}$ for U^{*}. Let $\phi_{3} \in D_{3} U^{*}$ have the form

$$
\phi_{3}=\left\{\begin{array}{l}
a x^{*(2)} y^{*}+d x^{*} y^{*(2)}+e y^{*(2)} z^{*}+f y^{*(2)} w^{*} \tag{7.1.1}\\
+h y^{*} z^{*(2)}+i z^{*(2)} w^{*}+k y^{*} w^{*(2)} \\
+m x^{*} y^{*} z^{*}+n x^{*} y^{*} w^{*}+p y^{*} z^{*} w^{*}
\end{array}\right.
$$

for parameters a, \ldots, p from P_{0}. Assume that
(a) $a \neq 0$ in P_{0}, and
(b) $\ell \phi_{3} \neq 0$ for all nonzero ℓ in U.

Then $\Gamma_{\phi_{3}}$ is not identically zero.
Proof. The proof is by contradiction. We suppose that $\Gamma_{\phi_{3}}$ is identically zero. We prove that there is a nonzero element ℓ of U with $\ell \phi_{3}=0$.

We first show that $i=0$. Fix the bases

$$
\omega_{U}=x \wedge y \wedge z \wedge w \quad \text { and } \quad \omega_{U^{*}}=x^{*} \wedge y^{*} \wedge z^{*} \wedge w^{*}
$$

of $\wedge^{4} U$ and $\Lambda^{4} U^{*}$, respectively. The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right)$ has six summands; however five of the summands have a factor of $x z \phi_{z} \wedge x z \phi_{3}=0$ or a factor from

$$
\Lambda^{2}\left(\boldsymbol{k} x^{2} \phi_{3}+\boldsymbol{k} x z \phi_{3}+\boldsymbol{k} x w \phi_{3}\right) \subseteq \Lambda^{2} \boldsymbol{k} y^{*}=0
$$

Thus,

$$
\Gamma_{\phi_{3}}\left(x^{(2)} z^{(2)} \otimes \omega_{U}\right)
$$

$$
\begin{aligned}
& =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge z^{2} \phi_{3} \wedge z w \phi_{3} \\
& =\left(a y^{*}\right) \wedge\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(h y^{*}+i w^{*}\right) \wedge\left(i z^{*}+p y^{*}\right) \\
& =a^{2} i^{2} \omega_{U^{*}}
\end{aligned}
$$

The parameter a is not zero. We have assumed that $\Gamma_{\phi_{3}}$ is identically zero. We conclude that $i=0$.

Ultimately, we prove that the elements

$$
\begin{aligned}
x \phi_{3} & =a x^{*} y^{*}+d y^{*(2)}+m y^{*} z^{*}+n y^{*} w^{*} \\
z \phi_{3} & =m x^{*} y^{*}+e y^{*(2)}+h y^{*} z^{*}+p y^{*} w^{*} \\
w \phi_{3} & =n x^{*} y^{*}+f y^{*(2)}+p y^{*} z^{*}+k y^{*} w^{*}
\end{aligned}
$$

of $D_{2} U^{*}$ are linearly dependent. We do this by showing that the maximal minors of the matrix

$$
\left[\begin{array}{llll}
a & d & m & n \\
m & e & h & p \\
n & f & p & k
\end{array}\right]
$$

are zero. We view the above matrix as the submatrix of the symmetric matrix

$$
M=\left[\begin{array}{llll}
a & d & m & n \tag{7.1.2}\\
d & 0 & e & f \\
m & e & h & p \\
n & f & p & k
\end{array}\right]
$$

which is obtained by deleting row 2 . In Lemma 7.2 we prove that

$$
\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right)=-a \operatorname{det} M[2 ; 2] \omega_{U^{*}} \quad \text { and } \quad \Gamma_{\phi_{3}}\left(y^{(4)} \otimes \omega_{U}\right)=\operatorname{det} M \omega_{U^{*}}
$$

where
$M\left[r_{1}, \ldots, r_{s} ; c_{1}, \ldots, c_{t}\right]$ is the submatrix of M obtained by deleting
rows r_{1}, \ldots, r_{s} and columns c_{1}, \ldots, c_{t}.

We have assumed that $\Gamma_{\phi_{3}}$ is identically zero and that a is nonzero. We conclude that $M[2 ; 2]$ and M both have determinant zero. Observe that

$$
\begin{align*}
& (\operatorname{det} M[2 ; 1])^{2}=\operatorname{det} M[1 ; 1] \operatorname{det} M[2 ; 2]-\operatorname{det} M[1,2 ; 1,2] \operatorname{det} M, \tag{7.1.4}\\
& (\operatorname{det} M[2 ; 3])^{2}=\operatorname{det} M[3 ; 3] \operatorname{det} M[2 ; 2]-\operatorname{det} M[2,3 ; 2,3] \operatorname{det} M, \text { and } \\
& (\operatorname{det} M[2 ; 4])^{2}=\operatorname{det} M[4 ; 4] \operatorname{det} M[2 ; 2]-\operatorname{det} M[2,4 ; 2,4] \operatorname{det} M .
\end{align*}
$$

One can check these formulas by hand or one can use the characteristic free straightening technique of [6] to verify these formulas; see Remark 7.3. At any rate, all four maximal minors of M with row 2 deleted are zero; $x \phi_{3}, z \phi_{3}, w \phi_{3}$ are linearly dependent elements of $D_{2} U^{*}$; and $\ell \phi_{3}=0$ for some nonzero element ℓ of $\boldsymbol{k} x \oplus \boldsymbol{k} z \oplus \boldsymbol{k} w$. This contradiction completes the proof.

Lemma 7.2. Let ϕ_{3} be the element of $D_{3} U^{*}$ which is given in (7.1.1) with i equal to zero and M be the matrix of (7.1.2). Adopt the convention of (7.1.3). Then
(a) $\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right)=-a(\operatorname{det} M[2 ; 2]) \omega_{U^{*}}$ and
(b) $\Gamma_{\phi_{3}}\left(y^{(4)} \otimes \omega_{U}\right)=(\operatorname{det} M) \omega_{U^{*}}$.

Proof. The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right)$ consists of six summands; however five of the summands have a factor of $x y \phi_{3} \wedge x y \phi_{3}=0$ or have a factor from

$$
\Lambda^{2} \boldsymbol{k}\left(x^{2} \phi_{3}, x z \phi_{3}, x w \phi_{3}\right) \subseteq \Lambda^{2} \boldsymbol{k} y^{*}=0
$$

Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} y^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge y z \phi_{3} \wedge y w \phi_{3} \\
& =\left\{\begin{array}{l}
\left(a y^{*}\right) \wedge\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \\
\wedge\left(e y^{*}+h z^{*}+m x^{*}+p w^{*}\right) \wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right)
\end{array}\right. \\
& =-a \operatorname{det}\left[\begin{array}{ccc}
a & m & n \\
m & h & p \\
n & p & k
\end{array}\right] .
\end{aligned}
$$

We also compute

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(y^{(4)} \otimes \omega_{U}\right) & =x y \phi_{3} \wedge y^{2} \phi_{3} \wedge y z \phi_{3} \wedge y w \phi_{3} \\
& =\left\{\begin{array}{l}
\left(a x^{*}+d y^{*}+m z^{*}+n w^{*}\right) \wedge\left(d w^{*}+e z^{*}+f w^{*}\right) \\
\wedge\left(e y^{*}+h z^{*}+m x^{*}+p w^{*}\right) \wedge\left(f y^{*}+k w^{*}+n x^{*}+p z^{*}\right)
\end{array}\right. \\
& =\operatorname{det}\left[\begin{array}{llll}
a & d & m & n \\
d & 0 & e & f \\
m & e & h & p \\
n & f & p & k
\end{array}\right] \omega_{U^{*} .}
\end{aligned}
$$

Remark 7.3. The identities of (7.1.4) about the minors of the 4×4 symmetric matrix M of (7.1.2) actually hold in a general situation. The matrix M need not be symmetric and the size of M need not be 4 .

Recall the Plücker relations on the maximal minors of a matrix. Let Y be an $r \times c$ matrix, with $r \leq c$. The entries of Y are in the commutative ring R. Let a_{1}, \ldots, a_{r-1} and b_{1}, \ldots, b_{r+1} be integers between 1 and c and $Y\left(s_{1}, \ldots, s_{\ell}\right)$ represents the matrix whose columns are the columns $s_{1}, s_{2}, \ldots, s_{\ell}$ of Y. Then

$$
\begin{equation*}
\sum_{i=1}^{r+1} \operatorname{det} Y\left(a_{1}, \ldots, a_{r-1}, b_{i}\right) \operatorname{det} Y\left(b_{1}, \ldots, \widehat{b}_{i}, \ldots b_{r+1}\right)=0 \tag{7.3.1}
\end{equation*}
$$

(where $\widehat{b_{i}}$ means that column b_{i} has been deleted.) Let M be a 4×4 matrix and Y be the matrix

$$
Y=[M \mid J]
$$

where

$$
J=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Apply (7.3.1) to the matrix $Y=[M \mid J]$, where M is given in (7.1.2). Take

$$
\left(\left\{a_{1}, a_{1}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}\right)
$$

to be

$$
(\{2,3,4\},\{1,3,4,7,8\}),(\{1,2,4\},\{1,3,4,6,7\}), \text { and }(\{1,2,3\},\{1,3,4,5,7\})
$$

to obtain (7.1.4).

8. The three variables Theorem.

In this section we state and prove the three variable version of the Main Theorem (Theorem 1.1). Our precise formulation of the three variable version (see Lemma 8.2) is used in the inductive part of the proof of Theorem 1.1. (See the case $r=0$ in Lemma 5.3.) Furthermore, we prove the three variable version using the same argument as we use for the four variable version; except there are fewer cases and each calculation is more straightforward. The reader might want to read the present section as a preparation for reading the proof of Theorem 1.1.

Theorem 8.1. Let \boldsymbol{k} be a field and A be a standard graded Artinian Gorenstein \boldsymbol{k} algebra of embedding dimension three and socle degree three. If the characteristic of \boldsymbol{k} is different than two, then A has the weak Lefschetz property. If the characteristic of A is equal to two, then A has the weak Lefschetz property if and only if A is not isomorphic to

$$
\begin{equation*}
\frac{\boldsymbol{k}[x, y, z]}{\left(x^{2}, y^{2}, z^{2}\right)} \tag{8.1.1}
\end{equation*}
$$

Proof. It is clear that the ring A of (8.1.1) does not satisfy the weak Lefschetz property. Indeed, if ℓ is a nonzero linear form of A, then $\ell^{2}=0$ in A; so, in particular, $\ell: A_{1} \rightarrow A_{2}$ is not injective. The Macaulay inverse system for A is $\phi_{3}=x^{*} y^{*} z^{*}$.

To complete the proof of Theorem 8.1, we adopt Data 2.3, with $d=3$, and use the method of the proof of Theorem 1.1. Let $U=A_{1}$ and $\phi_{3} \in D_{3} U^{*}$ be a Macaulay inverse system for A. Assume that $\ell \phi_{3}$ is nonzero for all ℓ in U. Assume also that either the characteristic of \boldsymbol{k} is not two or that the characteristic of \boldsymbol{k} equals two but there does not equal a basis x^{*}, y^{*}, z^{*} for U^{*} with $\phi_{3}=x^{*} y^{*} z^{*}$. In Lemma 8.2, we prove that $\Gamma_{\phi_{3}} \neq 0$. Apply Lemma 2.9 to complete the proof.

Lemma 8.2. Let \boldsymbol{k} be a field, U be a three-dimensional vector space over \boldsymbol{k}, and ϕ_{3} be an element of $D_{3} U^{*}$. Assume
(a) either the characteristic of \boldsymbol{k} is not two, or the characteristic of \boldsymbol{k} is equal to two but $\phi_{3} \neq x^{*} y^{*} z^{*}$ for any basis x^{*}, y^{*}, z^{*} of U^{*}; and
(b) $\ell \phi_{3}$ is nonzero for every nonzero ℓ in U.

Then $\Gamma_{\phi_{3}}$ is not identically zero.

Proof. The proof is by contradiction. We assume that $\Gamma_{\phi_{3}}$ is identically zero. There are two cases. Either ϕ_{3} has the form of (a) or (b) from Lemma 3.1.

We first assume that ϕ_{3} has the form of Lemma 3.1.(a). In other words, there is a basis x^{*}, y^{*}, z^{*} for U^{*} so that $\phi_{3}=a x^{*(3)}+x^{*} \phi_{2,0}+\phi_{3,0}$ with $a \in \boldsymbol{k}, a \neq 0$, and $\phi_{i, 0} \in D_{i} \boldsymbol{k}\left(y^{*}, z^{*}\right)$. Thus, there are parameters a, b, \ldots, j, in \boldsymbol{k}, with $a \neq 0$, such that

$$
\phi_{3}=\left\{\begin{array}{c}
a x^{*(3)}+d x^{*} y^{*(2)}+e x^{*} y^{*} z^{*}+f x^{*} z^{*(2)} \tag{8.2.1}\\
+g y^{*(3)}+h y^{*(2)} z^{*}+i y^{*} z^{*(2)}+j z^{*(3)}
\end{array}\right.
$$

Let x, y, z be the basis for U which is dual to the basis x^{*}, y^{*}, z^{*} for U^{*}. Let ω_{U} and $\omega_{U^{*}}$ be the bases $x \wedge y \wedge z$ and $x^{*} \wedge y^{*} \wedge z^{*}$ for $\bigwedge^{3} U$ and $\wedge^{3} U^{*}$, respectively.

Observe that

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(3)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge x z \phi_{3} \\
& =a x^{2} \wedge\left(d y^{*}+e z^{*}\right) \wedge\left(e y^{*}+f z^{*}\right) \\
& =a\left(d f-e^{2}\right) \omega_{U^{*}}
\end{aligned}
$$

The assumption that $\Gamma_{\phi_{3}}$ is identically zero, combined with the hypothesis that $a \neq 0$ yields that $d f-e^{2}=0$.

Apply Lemma 3.3 and change the basis for $\boldsymbol{k} \boldsymbol{y}^{*} \oplus \boldsymbol{k} z^{*}$ in order to write

$$
d x^{*} y^{*(2)}+e x^{*} y^{*} z^{*}+f x^{*} z^{*(2)}
$$

in the form $d x^{*} Y^{*(2)}$ with e and f equal to zero for some new basis Y^{*}, Z^{*} for $\boldsymbol{k} y^{*} \oplus \boldsymbol{k} z^{*}$.

In Lemma 8.3 we show that when ϕ_{3} is given in (8.2.1) with $e=f=0$, then

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(y^{(3)} \otimes \omega_{U}\right) & =-d^{2} i \omega_{U^{*}}, \\
\Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right) & =a d j \omega_{U^{*}}, \text { and } \\
\Gamma_{\phi_{3}}\left(x y^{(2)} \otimes \omega_{U}\right) & =a\left(g i-h^{2}\right) \omega_{U^{*}} .
\end{aligned}
$$

Recall our assumption that $\Gamma_{\phi_{3}}$ is identically zero and our local hypothesis that $a \neq 0$. If $d \neq 0$, then $i=j=h=0$,

$$
\phi_{3}=a x^{*(3)}+d x^{*} y^{*(2)}+g y^{*(3)},
$$

(because e and f continue to be zero), and $z \phi_{3}=0$, which is a contradiction. Thus, $d=0$.

In Lemma 8.3, we show that

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x y^{(2)} \otimes \omega_{U}\right) & =a\left(g i-h^{2}\right) \omega_{U^{*}}, \\
\Gamma_{\phi_{3}}\left(x z^{(2)} \otimes \omega_{U}\right) & =a\left(h j-i^{2}\right) \omega_{U^{*}}, \text { and } \\
\Gamma_{\phi_{3}}\left(x y z \otimes \omega_{U}\right) & =a(g j-h i) \omega_{U^{*}} .
\end{aligned}
$$

Continue to assume that $\Gamma_{\phi_{3}}=0, a \neq 0$, but $d=e=f=0$. It follows that $h^{2}=g i$, $h i=g j, h j=i^{2}$, and

$$
\left[\begin{array}{lll}
g & h & i \\
h & i & j
\end{array}\right]
$$

has rank at most one. Hence some nonzero linear combination of

$$
y \phi_{3}=g y^{*(2)}+h y^{*} z^{*}+i z^{*(2)} \quad \text { and } \quad z \phi_{3}=h y^{*(2)}+i y^{*} z^{*}+j z^{*(2)}
$$

is zero, which is a contradiction. This contradiction establishes Lemma 8.2 for ϕ_{3} described in Lemma 3.1.(a).

Now we assume that ϕ_{3} has the form of Lemma 3.1.(b). In other words, there is a basis x^{*}, y^{*}, z^{*} for U^{*} so that $\phi_{3}=b x^{*(2)} y^{*}+x \phi_{2,0}+\phi_{3,0}$ with $\phi_{i, 0}$ in $D_{i} k\left(y^{*}, z^{*}\right)$, $b \in k$, and $b \neq 0$. Thus, there are parameters a, b, \ldots, j, with $b \neq 0$, such that

$$
\phi_{3}=\left\{\begin{array}{c}
b x^{*(2)} y^{*}+d x^{*} y^{*(2)}+e x^{*} y^{*} z^{*}+f x^{*} z^{*(2)} \tag{8.2.2}\\
+g y^{*(3)}+h y^{*(2)} z^{*}+i y^{*} z^{*(2)}+j z^{*(3)}
\end{array}\right.
$$

It is shown in Lemma 8.4 that

$$
\Gamma_{\phi_{3}}\left(x^{(3)} \otimes \omega_{U}\right)=-b^{2} f \omega_{U^{*}} \quad \text { and } \quad \Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right)=-b^{2} j \omega_{U^{*}}
$$

Combine the assumption that $\Gamma_{\phi_{3}}$ is identically zero with the local hypothesis that $b \neq 0$ in order to conclude that $f=j=0$. It is shown in Lemma 8.5 that when $f=0$, then

$$
\Gamma_{\phi_{3}}\left(x^{(2)} y \otimes \omega_{U}\right)=b\left(e^{2}-b i\right) \omega_{U^{*}} \quad \text { and } \quad \Gamma_{\phi_{3}}\left(y^{(3)} \otimes \omega_{U}\right)=(\operatorname{det} M) \omega_{U^{*}},
$$

where

$$
M=\left[\begin{array}{lll}
b & d & e \tag{8.2.3}\\
d & g & h \\
e & h & i
\end{array}\right]
$$

The assumption that $\Gamma_{\phi_{3}}$ is identically zero, together with the local hypothesis that $b \neq 0$, yields that $e^{2}-b i=0$ and $\operatorname{det} M=0$. It follows that all three maximal minors of M with row two deleted are zero. This conclusion follows from the technique of (7.3.1) applied to the matrix

$$
\left[\begin{array}{llllll}
b & d & e & 0 & 0 & 1 \\
d & g & h & 0 & 1 & 0 \\
e & h & i & 1 & 0 & 0
\end{array}\right]
$$

Take columns $\{2,3\}$ to be $\left\{a_{1}, \ldots, a_{r-1}\right\}$ and columns $\{1,3,5,6\}$ to be $\left\{b_{1}, \ldots\right.$, $\left.b_{r+1}\right\}$ to see that

$$
\operatorname{det}\left[\begin{array}{ll}
d & e \\
h & i
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
d & h \\
e & i
\end{array}\right]+i \operatorname{det} M-\operatorname{det}\left[\begin{array}{ll}
g & h \\
h & i
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
b & e \\
e & i
\end{array}\right]=0
$$

The expressions $e^{2}-b i$ and $\operatorname{det} M$ are zero; hence, $d i-h e$ is also zero. Take $\{1,2\}$ to be $\left\{a_{1}, \ldots, a_{r-1}\right\}$ and columns $\{1,3,4,5\}$ to be $\left\{b_{1}, \ldots, b_{r+1}\right\}$ to see that

$$
\operatorname{det}\left[\begin{array}{ll}
b & d \\
e & h
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
b & e \\
d & h
\end{array}\right]+b \operatorname{det} M-\operatorname{det}\left[\begin{array}{ll}
b & d \\
d & g
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
b & e \\
e & i
\end{array}\right]=0
$$

hence $b h-d e=0$. At any rate, the matrix

$$
\left[\begin{array}{lll}
b & d & e \\
e & h & i
\end{array}\right]
$$

has rank at most one; hence

$$
\begin{aligned}
x \phi_{3} & =b x^{*} y^{*}+d y^{*(2)}+e y^{*} z^{*} \text { and } \\
z \phi_{3} & =e x^{*} y^{*}+h y^{*(2)}+i y^{*} z^{*}
\end{aligned}
$$

are linearly dependent. This contradicts the hypothesis that $\ell \phi_{3}$ is nonzero for all nonzero ℓ in U.

Lemma 8.3. If ϕ_{3} is given by (8.2.1), with $e=f=0$, then
(a) $\Gamma_{\phi_{3}}\left(y^{(3)} \otimes \omega_{U}\right)=-d^{2} i \omega_{U^{*}}$,
(b) $\Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right)=a d j \omega_{U^{*}}$,
(c) $\Gamma_{\phi_{3}}\left(x y^{(2)} \otimes \omega_{U}\right)=a\left(g i-h^{2}\right) \omega_{U^{*}}$,
(d) $\Gamma_{\phi_{3}}\left(x z^{(2)} \otimes \omega_{U}\right)=a\left(h j-i^{2}\right) \omega_{U^{*}}$, and
(e) $\Gamma_{\phi_{3}}\left(x y z \otimes \omega_{U}\right)=a(g j-h i) \omega_{U^{*}}$.

Proof. (a) We compute

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(y^{(3)} \otimes \omega_{U}\right) & =x y \phi_{3} \wedge w^{2} \phi_{3} \wedge y z \phi_{3} \\
& =d y^{*} \wedge\left(d x^{*}+g y^{*}+h z^{*}\right) \wedge\left(h y^{*}+i z^{*}\right) \\
& =-d^{2} i \omega_{U^{*}} .
\end{aligned}
$$

(b) The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right)$ has three summands; however two of the summands have a factor of $x z \phi_{3}=0$; hence

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge z^{2} \phi_{3} \\
& =a x^{*} \wedge d y^{*} \wedge\left(i y^{*}+j z^{*}\right) \\
& =a d j \omega_{U^{*}} .
\end{aligned}
$$

(c) The expansion of $\Gamma_{\phi_{3}}\left(x y^{(2)} \otimes \omega_{U}\right)$ has three summands; however two of the summands have a factor of $x z \phi_{3}=0$ or $x y \phi_{3} \wedge x y \phi_{3}=0$; hence

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x y^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge y z \phi_{3} \\
& =a x^{*} \wedge\left(d x^{*}+g y^{*}+h z^{*}\right) \wedge\left(h y^{*}+i z^{*}\right) \\
& =a\left(g i-h^{2}\right) \omega_{U^{*}} .
\end{aligned}
$$

(d) The expansion of $\Gamma_{\phi_{3}}\left(x z^{(2)} \otimes \omega_{U}\right)$ has three summands; however two of the summands have a factor of $x z \phi_{3}=0$; hence

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x z^{(2)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y z \phi_{3} \wedge z^{2} \phi_{3} \\
& =a x^{*} \wedge\left(h y^{*}+i z^{*}\right) \wedge\left(i y^{*}+j z^{*}\right) \\
& =a\left(h j-i^{2}\right) \omega_{U^{*}} .
\end{aligned}
$$

(e) The expansion of $\Gamma_{\phi_{3}}\left(x y z \otimes \omega_{U}\right)$ has six summands; however five of the summands have a factor of $x z \phi_{3}=0, y z \phi_{3} \wedge y z \phi_{3}=0$, or $x y \phi_{3} \wedge x y \phi_{3}=0$; hence

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x y z \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y^{2} \phi_{3} \wedge z^{2} \phi_{3} \\
& =a x^{*} \wedge\left(d x^{*}+g y^{*}+h z^{*}\right) \wedge\left(i y^{*}+j z^{*}\right) \\
& =a(g j-h i) \omega_{U^{*}}
\end{aligned}
$$

Lemma 8.4. If ϕ_{3} has the form of (8.2.2), then

$$
\Gamma_{\phi_{3}}\left(x^{(3)} \otimes \omega_{U}\right)=-b^{2} f \omega_{U^{*}} \quad \text { and } \quad \Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right)=-b^{2} j \omega_{U^{*}} .
$$

Proof. We compute

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(3)} \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge x z \phi_{3} \\
& =b y^{*} \wedge\left(b x^{*}+d y^{*}+e z^{*}\right) \wedge\left(e y^{*}+f z^{*}\right) \\
& =-b^{2} f \omega_{U^{*}} .
\end{aligned}
$$

The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right)$ has three summands; however one of the summands has a factor of $x z \phi_{3} \wedge x z \phi_{3}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} z \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge y z \phi_{3} \wedge x z \phi_{3}+x^{2} \phi_{3} \wedge x y \phi_{3} \wedge z^{2} \phi_{3} \\
& =\left\{\begin{array}{r}
b y^{*} \wedge\left(e x^{*}+h y^{*}+i z^{*}\right) \wedge\left(e y^{*}+f z^{*}\right) \\
+b y^{*} \wedge\left(b x^{*}+d y^{*}+e z^{*}\right) \wedge\left(f x^{*}+i y^{*}+j z^{*}\right)
\end{array}\right. \\
& =-b e f \omega_{U^{*}}-b(b j-e f) \omega_{U^{*}} \\
& =-b^{2} j \omega_{U^{*}} .
\end{aligned}
$$

Lemma 8.5. If ϕ_{3} has the form of (8.2.2), with $f=0$, then

$$
\Gamma_{\phi_{3}}\left(x^{(2)} y \otimes \omega_{U}\right)=b\left(e^{2}-b i\right) \omega_{U^{*}} \quad \text { and } \quad \Gamma_{\phi_{3}}\left(y^{(3)} \otimes \omega_{U}\right)=(\operatorname{det} M) \omega_{U^{*}},
$$

where M is the matrix of (8.2.3).
Proof. The expansion of $\Gamma_{\phi_{3}}\left(x^{(2)} y \otimes \omega_{U}\right)$ has three summands. Two of the summands have a factor of $x y \phi_{3} \wedge x y \phi_{3}=0$ or $x^{2} \phi_{3} \wedge x z \phi_{3} \in \Lambda^{2} k y^{*}=0$. Thus,

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(x^{(2)} y \otimes \omega_{U}\right) & =x^{2} \phi_{3} \wedge x y \phi_{3} \wedge y z \phi_{3} \\
& =b y^{*} \wedge\left(b x^{*}+d y^{*}+e z^{*}\right) \wedge\left(e x^{*}+h y^{*}+i z^{*}\right) \\
& =b\left(e^{2}-b i\right) \omega_{U^{*}}
\end{aligned}
$$

We compute

$$
\begin{aligned}
\Gamma_{\phi_{3}}\left(y^{(3)} \otimes \omega_{U}\right) & =x y \phi_{3} \wedge y^{2} \phi_{3} \wedge y z \phi_{3} \\
& =\left(b x^{*}+d y^{*}+e z^{*}\right) \wedge\left(d x^{*}+g y^{*}+h z^{*}\right) \wedge\left(e x^{*}+h y^{*}+i z^{*}\right) \\
& =\left|\begin{array}{ccc}
b & d & e \\
d & g & h \\
e & h & i
\end{array}\right| \omega_{U^{*}} .
\end{aligned}
$$

REFERENCES

[1] N. Abdallah, N. Altafi, P. De Poi, L. Fiorindo, A. Iarrobino, P. Marques, E. Mezzetti, R. MiróRoig, and L. Nicklasson Hilbert functions and Jordan type of Perazzo Artinian algebras, arXiv:2303.16768
[2] K. Akin, D. Buchsbaum, and J. Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), 207-278.
[3] R. Bøgvad, Gorenstein rings with transcendental Poincaré series, Math. Scand. 53 (1983), 5-15.
[4] H. Brenner and A. Kaid, A note on the weak Lefschetz property of monomial complete intersections in positive characteristic, Collect. Math. 62 (2011), 85-93.
[5] D. Bricalli, F. Favale, and G. Pirola, A theorem of Gordan and Noether via Gorenstein rings, arXiv:2201.07550
[6] C. De Concini, D. Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), 129-165.
[7] D. Eisenbud, Commutative algebra with a view toward algebraic geometry Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.
[8] S. El Khoury and A. Kustin, Artinian Gorenstein algebras with linear resolutions, J. Algebra 420 (2014), 402-474.
[9] S. El Khoury and A. Kustin, The explicit minimal resolution constructed from a Macaulay inverse system, J. Algebra 440 (2015), 145-186.
[10] S. El Khoury and A. Kustin, The structure of Gorenstein-linear resolutions of Artinian algebras, J. Algebra 453 (2016), 492-560.
[11] S. El Khoury and A. Kustin, Quadratically presented grade three Gorenstein ideals, J. Algebra 622 (2023), 258-290.
[12] L. Fiorindo, E. Mezzetti, R. Mirø-Roig, Perazzo 3-folds and the weak Lefschetz property, J. Algebra 626 (2023), 56-81.
[13] R. Gondim and G. Zappalà, On mixed Hessians and the Lefschetz properties, J. Pure Appl. Algebra 223 (2019), 4268-4282.
[14] P. Gordan and M. Noether, Über die algebraischen Formen, deren Hesse'sche Determinante identisch verschwindet, Math. Ann. 10 (1876), 547-568.
[15] D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at https://math.uiuc.edu/Macaulay2/
[16] T. Gulliksen and G. Levin, Homology of Local Rings, Queens Papers in Pure and Applied Mathematics, vol.20, Queens University, Kingston, Ont., 1969.
[17] O. Hesse, Über die Bedingung, unter welche eine homogene ganze Function von n unabhängigen Variabeln durch Lineäre Substitutionen von n andern unabhängigen Variabeln auf eine homogene Function sich zurückführen läßt, die eine Variable weniger enthält, J. Reine Angew. Math. 42 (1851), 117-124.
[18] O. Hesse, Zur Theorie der ganzen homogenen Functionen, J. Reine Angew. Math. 56 (1859) 263-269.
[19] A. Kustin, An explicit, characteristic-free, equivariant homology equivalence between Koszul complexes, Comm. Algebra 36 (2008), 3263-3316.
[20] A. Kustin, L. Şega, and A. Vraciu, Poincaré series of compressed local Artinian rings with odd top socle degree, J. Algebra 505 (2018), 383-419.
[21] A. Kustin and A. Vraciu, The weak Lefschetz property for monomial complete intersection in positive characteristic, Trans. Amer. Math. Soc. 366 (2014), 4571-4601.
[22] T. Maeno and J. Watanabe, Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J. Math. 53 (2009), 591-603.
[23] D. G. Northcott, Multilinear algebra, Cambridge University Press, Cambridge, 1984.
[24] U. Perazzo, Sulle varietà cubiche la cui hessiana svanisce identicamente, G. Mat. Battaglini 38 (1900), 337-354.
[25] L. Reid, L. Roberts, and M. Roitman, On complete intersections and their Hilbert functions Canad. Math. Bull. 34 (1991), 525-535.
[26] M. Rossi and L. Şega, Poincaré series of modules over compressed Gorenstein local rings, Adv. Math. 259 (2014), 421-447.
[27] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), 168-184.
[28] J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, Commutative algebra and combinatorics (Kyoto, 1985), 303-312, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987.
[29] J. Watanabe, A remark on the Hessian of homogeneous polynomials, The Curves Seminar at Queens, Volume XIII, Queens Papers in Pure and Appl. Math., no. 119, pp. 171-178, 2000.
[30] J. Watanabe and M. de Bondt, On the theory of Gordan-Noether on homogeneous forms with zero Hessian, Polynomial rings and affine algebraic geometry, 73-107, Springer Proc. Math. Stat., 319, Springer, Cham, (2020).

Department of Mathematics, University of South Carolina, Columbia SC 29208, U.S.A.

Email address: kustinmath.sc.edu

[^0]: Date: May 26, 2023.
 2010 Mathematics Subject Classification. 13C40, 13D02, 13H10, 13E10, 13 A02.
 Key words and phrases. Artinian algebra, Gordan-Noether Theorem, Hessian, Perazzo varieties, Gorenstein algebra, Macaulay inverse system, weak Lefschetz property.

 We made extensive use of Macaulay2 [15]. We are very appreciative of this computer algebra system.

