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ABSTRACT. Let kkk be an arbitrary field and A be a standard graded Artinian Goren-
stein kkk-algebra of embedding dimension four and socle degree three. Then, except
for exactly one exception, A has the weak Lefschetz property. Furthermore, the
exception occurs only in characteristic two.
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1. INTRODUCTION.

The Lefschetz property is a ring-theoretic abstraction of the Hard Lefschetz The-
orem for compact Kähler manifolds. Let kkk be a field. A graded kkk-algebra A, equal
to

⊕s
i=0 Ai, has the weak Lefschetz property if there is a linear form ` ∈ A1 so that

multiplication by ` from Ai to Ai+1 has maximal rank for each i. (Similarly, A has
the strong Lefschetz property if multiplication by `s has maximal rank in each de-
gree for every positive integer s for some ` ∈ A1.) Stanley introduced the concept
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in [27] where he proved that if the characteristic of kkk is zero, P = kkk[x1, . . . ,xn], and
A = P/(xa1

1 , . . . ,xan
n ), then A has the strong Lefschetz property. Other early proofs

of Stanley’s theorem were also given by [25] and [28].
Our interest in the weak Lefschetz property for fields of arbitrary characteristic is

a consequence of our desire to record the minimal resolution of A by free P-modules
in terms of the coefficients of the Macaulay inverse system which determines A. See
[8], [9], and especially [10], where this project is carried out for quotient rings A
with Castelnuovo regularity two as a P-module, and [11] for quotient rings A of
regularity three in three variables. (We also have results along these lines pertain-
ing to ideals of regularity three in four and five variables.) We are able to carry out
this project provided A has the weak Lefschetz property, independent of the char-
acteristic of kkk. The absence of the weak Lefschetz property is an obstruction to this
project; but positive characteristic, in and of itself, does not cause any problem.

The weak Lefschetz property is very sensitive to change in characteristic. In
positive characteristic p, Brenner and Kaid [4] gave an explicit description of those
d and p for which P/(xd

1 ,x
d
2 , . . . ,x

d
n) has the weak Lefschetz property when P equals

kkk[x1, . . . ,xn], kkk is a field of characteristic p, and n = 3. The paper [21] is devoted to
the analogous project for 4≤ n.

Artinian rings with socle degree three are somewhat mysterious. Bøgvad’s [3]
examples of Artinian Gorenstein rings with transcendental Poincaré series have so-
cle degree three. Rossi and Şega [26] prove that if R is a compressed Artinian
Gorenstein local ring with socle degree not equal to three, then the Poincaré series
of all finitely generated R-modules are rational, sharing a common denominator.
Similarly, it is shown in [20] that if R is a compressed local Artinian ring with odd
top socle degree at least five, then the Poincaré series of all finitely generated R-
modules are rational, sharing a common denominator. The same conclusion does
not hold when the top socle degree is three.

Theorem 1.1 is the main result in the paper.

Theorem 1.1. Let kkk be a field and A be a standard graded Artinian Gorenstein kkk-
algebra of embedding dimension four and socle degree three. If the characteristic of
kkk is different than two, then A has the weak Lefschetz property. If the characteristic
of A is equal to two, then A has the weak Lefschetz property if and only if A is not
isomorphic to

(1.1.1)
kkk[x,y,z,w]

(xy,xz,xw,y2,z2,w2,x3 + yzw)
.

We first demonstrate that the kkk-algebra A of (1.1.1) does not satisfy the weak
Lefschetz property. Indeed, let `= ax+by+cz+dw be an arbitrary nonzero linear
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form in A. If at least one of the parameters b, c, or d is nonzero, then let `′ be the
nonzero linear form `′ = by+ cz+dw ∈ A1. Observe that

``′ = ax(by+ cz+dw)+b2y2 + c2z2 +d2w2 = 0 ∈ A.

If b = c = d = 0, then let `′ be the nonzero linear form `′ = y of A1. Observe that
``′ = axy = 0 in A. In either case, the arbitrary nonzero linear form ` is zero divisor
on A.

In the rest of the paper we show that if A satisfies the hypotheses of Theorem 1.1,
but is not isomorphic to the ring of (1.1.1), then A has the weak Lefschetz property.
We use a Macaulay inverse system for A.

Let U be the vector space A1, P be the polynomial ring P = Sym•U , I be a
homogeneous ideal of P with A isomorphic to P/I, U∗ be the dual space Homkkk(U,kkk)
of U , and D•U∗ be the divided power kkk-algebra

⊕
0≤i DiU∗, with

DiU∗ = Homkkk(SymiU,kkk).

The rules for a divided power algebra are recorded in [16, Section 7] or [7, Appen-
dix 2]. (In practice these rules say that w(n) behaves like wn/(n!) would behave if
n! were a unit in R.)

Macaulay duality guarantees that

annD•U∗ I

is a cyclic P-submodule of D•U∗ generated by an element in D3U∗. (Any generator
annD•U∗ I in D3U∗ is called a Macaulay inverse system for A.) Furthermore, if φ3 is
a Macaulay inverse system for A, then

I = annP φ3.

The hypothesis that A has embedding dimension four ensures that

(1.1.2) `φ3 6= 0 for any nonzero ` in U .

We observe that the Macaulay inverse system for the kkk-algebra A of (1.1.1) is

(1.1.3) φ3 = x∗(3)+ y∗z∗w∗.

In section 3 we put the Macaulay inverse system into the form

αφ3 = x∗(3)+ x∗φ2,0 +φ3,0(1.1.4)

or

αφ3 = x∗(2)y∗+ x∗φ2,0 +φ3,0,(1.1.5)

for some unit α, with φi,0 ∈Di(kkky∗⊕kkkz∗⊕kkkw∗). We study various cases depending
on whether φ3 has form (1.1.4) or (1.1.5) and also depending on how complicated
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φ2,0 is. We treat the four significant cases in Sections 4, 5, 6, and 7. All of our
calculations employ the homomorphism

Γφ3 : DdU⊗
∧d U →

∧d U∗

which is introduced in section 2.B. The connection between Γφ3 and the weak
Lefschetz property is explained in Lemma 2.9. Roughly speaking,

Γφ3(`
(d)⊗ x1∧ . . .∧ xd) = `x1φ3∧ . . .∧ `xdφ3 ∈

∧d U∗,

for `,x1, . . . ,xd ∈U and φ3 ∈U∗. It is shown in Lemma 2.9 that if φ3 is a Macaulay
inverse system for A and `φ3 is nonzero for all nonzero ` in U , then

A has the weak Lefschetz property ⇐⇒ Γφ3 is not identically zero.

The hypothesis that `φ3 is nonzero whenever ` in U is nonzero is innocuous. It
merely says that the embedding dimension of A is equal to the number of variables
of P. If this hypothesis is not satisfied, then one can view A as a quotient of a
polynomial ring with one fewer variable than P has.

Traditionally, the Lefschetz properties are studied in a graded kkk-algebra where
kkk is a field of characteristic zero. In particular, for example, Gondim and Zappala
[13, Cor. 5.5] have proven that a standard graded Gorenstein kkk-algebra of small
codimension, with socle degree three, and presented by quadrics, has the weak
Lefschetz property, provided the field kkk has characteristic zero. Duality is obtained
using the algebra of differential operators Q=kkk[ ∂

∂x1
, . . . , ∂

∂xn
]. Every graded Artinian

Gorenstein algebra A has a presentation of the form

(1.1.6) A∼= Q/annQ F,

for some n and some homogeneous polynomial F ∈ kkk[x1, ...,xn], where

annQ F = {φ ∈ Q | φ(F(x)) = 0}.

The Hessian of the form F is the determinant of the square matrix ( ∂2F
∂xi∂x j

) of sec-
ond order partial derivatives of F . When kkk has characteristic zero, Watanabe (see
[29, 22]) has shown that (1.1.6) fails to have the Strong Lefschetz Property if and
only if one of the non-trivial higher Hessians of F vanishes. This result has been
generalized to the weak Lefschetz property using “mixed Hessians”, see [13].

For the time being keep kkk a field of characteristic zero and let F be a homoge-
neous form in kkk[x1, . . . ,xn]. Hesse [17, 18] believed that the Hessian of F vanishes if
and only if the projective variety X , defined by F , is a cone. However, Gordan and
Noether [14] proved that while Hesse’s claim is true when the degree of F is 2 or
n≤ 4, it is false for 5≤ n and for forms of degree at least three. Gordan and Noether
realized that X being a cone is equivalent to the condition that the partial derivatives
of F are kkk-linearly dependent, while F has vanishing Hessian if and only if the par-
tial derivatives of F are kkk-algebraically dependent. A class of forms F , discussed
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both in [14] and by Perazzo [24], with vanishing Hessian and for which V (F) is not
a cone, are the Perazzo forms

F = x1 p1 + · · ·+ xa pa +G ∈ kkk[x1, . . . ,xa,u1, . . . ,ub],

where p1, . . . , pa and G are in kkk[u1, . . . ,ub], and p1, . . . , pa are linearly independent,
but algebraically dependent. In particular, for a + b = 5, all non-cones defined
by a form with vanishing Hessian are defined by a Perazzo form. (See [14] or
[30, Theorem 7.3].) The Lefschetz properties of rings defined by Perazzo forms in
characteristic zero are investigated in the recent papers [12, 1].

J. Watanabe and M. de Bondt [30] have written a detailed modern argument for
the Gordan-Noether Theorem. The paper [5] uses geometric techniques to give a
new proof of the Gordan-Noether Theorem. In both of these papers the field kkk has
characteristic zero.

We work in arbitrary characteristic; so we do not take literal partial derivatives.
Instead we use the divided power algebra D•U∗ which is associated to the poly-
nomial ring P = Sym•U for the vector space U over the field kkk. We replace the
“Hessian of F” with the homomorphism “Γφ3” of Section 2.B.

In Section 8 we state and prove the three variable version of the Main Theo-
rem (Theorem 1.1). Our precise formulation of the three variable version (see
Lemma 8.2) is used in the inductive part of the proof of Theorem 1.1. (See the
case r = 0 in Lemma 5.3.) Furthermore, we prove the three variable version using
the same argument as we use for the four variable version; except there are fewer
cases and each calculation is more straightforward. The reader might want to read
Section 8 as a preparation for reading the proof of Theorem 1.1.

2. NOTATION, CONVENTIONS, AND ELEMENTARY RESULTS.

2.A. The language.

Conventions 2.1. (a) The graded algebra A =
⊕

0≤i Ai is a standard graded A0-
algebra if A1 is finitely generated as an A0-module and A is generated as an
A0-algebra by A1.

(b) Let kkk be a field and A =
⊕

Ai be a standard graded kkk-algebra. Then A has
the weak Lefschetz property if there exists a linear form ` of A1 such that the
kkk-module homomorphism

µ` : Ai→ Ai+1

has maximal rank for each index i, where µ` is multiplication by `. (A homo-
morphism ξ : V →W of finitely generated kkk-modules has maximal rank if rankξ

is equal to min{dimV,dimW}.)
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(c) If A =
⊕

σ
i=0 Ai is an Artinian standard-graded kkk-algebra, then A is Gorenstein

with socle degree σ if Aσ is a one dimensional vector space and every ideal of
A contains Aσ.

(d) In this paper kkk is an arbitrary field (unless otherwise noted) and Hom, Sym, D,∧
, ∧, and ⊗ mean Homkkk, Symkkk, Dkkk,

∧
kkk, ∧kkk and ⊗kkk, respectively.

(e) If U is a vector space over the field kkk, then T•U , Sym•U , D•U , and
∧•U are the

tensor algebra, symmetric algebra, divided power algebra, and exterior algebra
of U over kkk, respectively. See, for example, [23] or [7].

(f) If M is a matrix, then detM = |M| is the determinant of M.
(g) If f is a homomorphism, then we write im f and ker f for the image and kernel

of f , respectively.
(h) If U is a vector space, then dimU is the dimension of U as a vector space.

Conventions 2.2. (a) If U is a finite dimensional vector space over the field kkk,
then U∗ represents Homkkk(U,kkk) and D•U∗ represents the divided power alge-
bra

⊕
∞
i=0 DiU∗ for

DiU∗ = Homkkk(SymiU,kkk).

(b) If x1, . . . ,xd is a basis for U , then the set of monomials of degree i in x1, . . . ,xd ,
denoted

(x1,...,xd
i

)
, is a basis for the i-th symmetric power, SymiU , of U and the

set of homomorphisms {
m∗
∣∣∣∣m ∈ (x1, . . . ,xd

i

)}
is a basis for DiU∗ where m∗ : SymiU→ kkk is the kkk-module homomorphism with

(2.2.1) m∗(m′) =

{
1, if m = m′, and
0, if m 6= m′,

for m,m′ in
(x1,...,xd

i

)
.

(c) We make much use of the structure of D•U∗ as a module over Sym•U . If
vi ∈ D∗U and u j ∈ Sym j U , then u jvi is the element of Di− jU∗ which sends ui− j

in Symi− j U to vi(u jui− j). In particular, if m and m′ are monomials in Sym•U
(with respect to some basis x1, . . . ,xd for U and ∗ is defined as in (2.2.1)), then

m′(m)∗ =

{
( m

m′ )
∗, if m′ divides m,

0, if m′ does not divide m.

(d) If u∗ is an element of U∗, then we write u∗(n) for the element (u∗)(n) in DnU∗.
(e) If x1, . . . ,xd is a basis for the vector space U , then x∗1, . . . ,x

∗
d is the dual basis for

U∗. Similarly, if then x∗1, . . . ,x
∗
d is a basis for a vector space U∗, then x1, . . . ,xd

is the dual basis for the vector space U .
(f) If ui ∈ SymiU and φi ∈ DiU∗, then uiφi = φiui is an element of kkk.

The following data is used throughout the paper.
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Data 2.3. Let kkk be a field, U be a d-dimensional vector space over kkk, P be the
polynomial ring P = Sym•U , φ3 be a non-zero element of D3U∗, I = annP(φ3),
and Aφ3 be the standard graded Artinian Gorenstein kkk-algebra Aφ3 = P/I. The socle
degree of A is three.

2.B. The homomorphisms ./, pφ3 , and Γφ3 .

Notation 2.4. Let kkk be a field, E and G be kkk-modules, and m be a positive integer.
Each pair of elements (X ,Y ), with X ∈DmE and Y ∈

∧m G, gives rise to an element
of

∧m(E⊗G), which we denote by X ./ Y . We now give the definition of X ./ Y .
Consider the composition

DmE⊗TmG ∆⊗1−−→ TmE⊗TmG
ξ−→

∧m(E⊗G),

where ∆ : DmE→ TmE is co-multiplication and

ξ
(
(x1⊗ . . .⊗ xm)⊗ (y1⊗ . . .⊗ ym)

)
= (x1⊗ y1)∧ . . .∧ (xm⊗ ym),

for xi ∈ E and yi ∈ G. It is easy to see that the above composition factors through
DmE ⊗

∧m G. Let X ⊗Y 7→ X ./ Y be the resulting map from DmE ⊗
∧m G to∧m(E⊗G). This map is used in [19] and is called 〈−,−〉 in [2, III.2].

Definition 2.5. Adopt Data 2.3.

(a) Define the kkk-module homomorphism pφ3 : Sym2U →U∗ by pφ3(u2) = u2(φ3),
for u2 ∈ Sym2U .

(b) Define the kkk-module homomorphism Γφ3 : DdU⊗
∧d U→

∧d U∗ to be the com-
position

DdU⊗
∧d U ./−→

∧d(U⊗U)
∧d mult−−−−→

∧d(Sym2U)

∧d pφ3−−−−→
∧d U∗,

where
mult : U⊗U → Sym2U

is multiplication in the Symmetric algebra Sym•U .

Example 2.6. Adopt Data 2.3. Let Γφ3 be the kkk-module homomorphism of Defini-
tion 2.5.(b). Let `1, . . . , `d be a basis for U .

If d = 3, then

Γφ3(`
(3)
1 ⊗ `1∧ `2∧ `3) = `2

1φ3∧ `1`2φ3∧ `1`3φ3,

Γφ3(`
(2)
1 `2⊗ `1∧ `2∧ `3) =

{
`2

1φ3∧ `2
2φ3∧ `1`3φ3

+`2
1φ3∧ `1`2φ3∧ `2`3φ3, and

Γφ3(`1`2`3⊗ `1∧ `2∧ `3) =

{
`2

1φ3∧ `2
2φ3∧ `2

3φ3

+2`1`2φ3∧ `2`3φ3∧ `1`3φ3.

If dimU = 4, then

Γφ3(`
(4)
1 ⊗ `1∧ `2∧ `3∧ `4) = `2

1φ3∧ `1`2φ3∧ `1`3φ3∧ `1`4φ3,
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Γφ3(`
(3)
1 `2⊗ `1∧ `2∧ `3∧ `4) =


`2

1φ3∧ `2
2φ3∧ `1`3φ3∧ `1`4φ3

+`2
1φ3∧ `1`2φ3∧ `2`3φ3∧ `1`4φ3

+`2
1φ3∧ `1`2φ3∧ `1`3φ3∧ `2`4φ3,

Γφ3(`
(2)
1 `

(2)
2 ⊗ `1∧ `2∧ `3∧ `4) =


`2

1φ3∧ `1`2φ3∧ `2`3φ3∧ `2`4φ3

+`2
1φ3∧ `2

2φ3∧ `1`3φ3∧ `2`4φ3

+`2
1φ3∧ `2

2φ3∧ `2`3φ3∧ `1`4φ3

+`1`2φ3∧ `2
2φ3∧ `1`3φ3∧ `1`4φ3,

Γφ3(`
(2)
1 `2`3⊗ `1∧ `2∧ `3∧ `4) =



`2
1φ3∧ `1`2φ3∧ `2`3φ3∧ `3`4φ3

+`2
1φ3∧ `1`2φ3∧ `2

3φ3∧ `2`4φ3

+`2
1φ3∧ `2

2φ3∧ `1`3φ3∧ `3`4φ3

+`2
1φ3∧ `2`3φ3∧ `1`3φ3∧ `2`4φ3

+`2
1φ3∧ `2

2φ3∧ `2
3φ3∧ `1`4φ3

+2`1`2φ3∧ `2`3φ3∧ `1`3φ3∧ `1`4φ3, and

Γφ3(`1`2`3`4⊗ `1∧ `2∧ `3∧ `4) =



`2
1φ3∧ `2

2φ3∧ `2
3φ3∧ `2

4φ3

+2`2
1φ3∧ `2`3φ3∧ `3`4φ3∧ `2`4φ3

+2`1`3φ3∧ `2
2φ3∧ `3`4φ3∧ `1`4φ3

+2`1`2φ3∧ `2`4φ3∧ `2
3φ3∧ `1`4φ3

+2`1`2φ3∧ `2`3φ3∧ `1`3φ3∧ `2
4φ3.

Remark 2.7 is used in the proof of Observation 2.8.

Remark 2.7. Field extensions are always faithfully flat. Let V be a vector space
over a field kkk, K be a field extension of kkk, and v ∈ V . If v⊗kkk 1 is zero in V ⊗kkk K,
then v is zero in V .

Observation 2.8. Adopt Data 2.3. If the homomorphism

Γφ3 : DdU⊗
∧d U →

∧d U∗

of Definition 2.5 satisfies Γφ3(`
(d)⊗ωU) = 0 for all ` ∈U and some basis element

ωU of
∧d U, then Γφ3 is identically zero.

Proof. Fix a basis ωU for
∧d U . The map

Γφ3(−⊗ωU) : U →
∧d U∗

is a linear transformation of vector spaces over a field. In light of Remark 2.7, it
suffices to prove the assertion when kkk has a large number of elements.

The proof of Observation 2.8 is obtained by iterating the following claim.

Claim 2.8.1. Let X be an element of DδU for some integer δ with 0 ≤ δ ≤ d. If
Γφ3(`

(d−δ)X⊗ωU) = 0 for all ` ∈U, then Γφ3(`
(e1)
1 `

(e2)
2 X⊗ωU) = 0 for all `1, `2 in

U and all nonnegative integers e1 and e2 with e1 + e2 = d−δ.
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Proof of Claim 2.8.1. If `1 and `2 are in U and a1, . . . ,ad−δ+1 are distinct elements
of kkk, then

(2.8.2) Γφ3((`1 +ai`2)
(d−δ)X⊗ωU) =

d−δ

∑
j=0

a j
i Γφ3(`

(d−δ− j)
1 `

( j)
2 X⊗ωU).

The hypothesis guarantees that the left side of (2.8.2) is zero. It follows that product
of the row vector[

Γφ3(`
(d−δ−0)
1 `

(0)
2 X⊗ωU) Γφ3(`

(d−δ−1)
1 `

(1)
2 X⊗ωU) . . . Γφ3(`

(0)
1 `

(d−δ−0)
2 X⊗ωU)

]
and the Vandermonde matrix

(2.8.3)


1 1 . . . 1
a1 a2 . . . ad−δ+1
...

...
...

ad−δ

1 ad−δ

2 . . . ad−δ

d−δ+1


is zero. The Vandermonde matrix is invertible and Γφ3(`

(e1)
1 `

(e2)
2 X⊗ωU) = 0 for all

`1 and `2 in U and all non-negative integers ei with e1+e2 = d−δ. This completes
the proof of Claim 2.8.1.

Now we prove Observation 2.8. First take X = 1. The hypothesis ensures that
Γφ3(`

(d)⊗ωU) = 0 for all ` ∈U . Apply Claim 2.8.1 to conclude that

(2.8.4) Γφ3(`
(e1)
1 `

(e2)
2 ⊗ωU) = 0 for all `1, `2 ∈U and all nonnegative

integers e1 and e2 with e1 + e2 = d.

Now take X = `
(e3)
3 for some `3 ∈U and some integer e3 with 0≤ e3 ≤ d. Apply

Claim 2.8.1, together with (2.8.4), to conclude that Γφ3(`
(e1)
1 `

(e2)
2 `

(e3)
3 ⊗ωU) = 0, for

all `1, `2, `3 ∈U and all nonnegative integers e1, e2, and ee with e1 + e2 + e3 = d.
One finishes the proof by iterating Claim 2.8.1. �

2.C. The connection between Γφ3 and the weak Lefschetz property.

Lemma 2.9. Adopt Data 2.3 and Definition 2.5. Assume `φ3 6= 0 for all nonzero
` in U. Then A = Aφ3 has the weak Lefschetz property if and only if Γφ3 is not
identically zero.

Remark 2.10. The hypothesis `φ3 6= 0 for all nonzero ` in U is harmless. It is
equivalent to asserting that the degree one component of the ideal I is zero. Conse-
quently, it is also equivalent to the hypothesis that the embedding dimension of A is
equal to the vector space dimension of U .

Proof. Recall from Observation 2.8 that

Γφ3(`
(d)⊗−) is zero for all ` ∈U ⇐⇒ Γφ3 is identically zero.
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Let x1, . . . ,xd be a basis for U , ` be an element of U , and µ` represent the homomor-
phism “multiplication by `”. Observe that

` is a weak Lefschetz element in A

⇐⇒ µ` : A1→ A2 is injective

⇐⇒ µ` : P1→ A2 is injective, because I1 = 0,

⇐⇒

{
`(∑aixi)(φ3) = 0, with ai in kkk,
only if all ai are zero,

⇐⇒

{
`x1(φ3), `x2(φ3), . . . , `xd(φ3) are linearly
independent in U∗,

⇐⇒ Γφ3(`
(d)⊗ x1∧ x2∧ . . .∧ xd) 6= 0. �

Theorem 1.1, which is the main result of this paper, is an immediate consequence
of Lemma 2.11, which is an immediate consequence of Lemma 2.9.

Lemma 2.11. Adopt Data 2.3 with d = 4. Assume

(a) either the characteristic of kkk is different than two; or else, the characteristic
of kkk is equal to two, but there does not exist a basis x∗, y∗, z∗, w∗ for U∗ with
φ3 = x∗(3)+ y∗z∗w∗, and

(b) `φ3 6= 0 for all nonzero ` ∈U.

Then Γφ3 is not identically zero.

The proof of Lemma 2.11 involves multiple cases and comprises the majority of
this paper. The official proof is given in (3.4).

3. PUT THE MACAULAY INVERSE SYSTEM INTO A CONVENIENT FORM.

Ultimately, we prove a statement about an element φ3 of D3U∗, where U is a
four-dimensional vector space. Our proof depends on the form of φ3. There are
four main cases. Two of the cases involve φ3 as described in (a) of Lemma 3.1.
(These two cases are distinguished by the rank r of the homomorphism pφ2,0; see
Lemma 3.2.) These two cases are treated in Propositions 4.1 and 5.1. The other two
cases involve φ3 as described in (b) of Lemma 3.1. These two cases are separated
in 6.3 and are treated in Propositions 6.4 and 7.1.

In most characteristics, all φ3 can be put in the form of (a) of Lemma 3.1; how-
ever, form (b) of Lemma 3.1 is required in characteristic three.

Lemma 3.1. Let kkk be a field, U be a d-dimensional vector space over kkk, and φ3 be
a nonzero element of D3U∗. Then there exists a unit α of kkk and a basis x∗1, . . . ,x

∗
d

for U∗ such that

(a) αφ3 = x∗(3)1 + x∗1φ2,0 +φ3,0, or

(b) αφ3 = x∗(2)1 x∗2 + x∗1φ2,0 +φ3,0, or
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(c) kkk has characteristic two and

φ3 = ∑
1≤i< j<k≤d

αi, j,kx∗i x∗jx
∗
k

for some αi, j,k in kkk,

where φi,0 is an element of
Di(

⊕
2≤ j≤d

kkkx∗j).

Remark. The case (c) is not very interesting when d = 4; see (3.4).

Proof. Begin with an arbitrary basis y∗1, . . . ,y
∗
d for U∗.

Claim 3.1.1. After a change of basis,

αφ3 = x∗(3)1 + x∗(2)1 φ1,0 + x∗1φ2,0 +φ3,0, with α 6= 0, or(3.1.2)

φ3 = x∗(2)1 φ1,0 + x∗1φ2,0 +φ3,0, with φ1,0 6= 0, or(3.1.3)

φ3 = ∑
1≤i< j<k≤d

αi, j,kx∗i x∗jx
∗
k ,(3.1.4)

with α,αi, j,k in kkk and φi,0 ∈ Di(
⊕

2≤ j≤d kkkx∗j).

Proof of Claim 3.1.1. Write φ3 as

φ3 = ∑
e1+···+ed=3

αe1,...,ed y∗(e1)
1 y∗(e2)

2 · · ·y∗(ed−1)
d−1 y∗(ed)

d ,

with αe1...,ed ∈ kkk. If any of the parameters

(3.1.5) α0,...,0,3,0,...,0

is nonzero, then φ3 has the form of (3.1.2).
If the parameters of (3.1.5) are zero; but any of the parameters

(3.1.6) α0,...,0,2,0,...,0,1,0...,0

are nonzero, then φ3 has the form of (3.1.3). If all of the parameters in (3.1.5)
and (3.1.6) are zero, then φ3 has the form of (3.1.4). This completes the proof of
Claim 3.1.1.

Three observations are needed to complete the proof of Lemma 3.1. First, if φ3

has the form of (3.1.2), then the change of basis x∗1 = X∗−φ1,0 puts φ3 into the form
of (a) because

(X∗−φ1,0)
(3) = X∗(3)−X∗(2)φ1,0 +X∗φ(2)1,0−φ

(3)
1,0.

Second, if φ3 has the form of (3.1.3), then one may change the basis of U∗ again
and choose the new “x∗2” to equal the old φ1,0. Third, if the characteristic of kkk is not
two, then any nonzero element of D3U∗ of form (3.1.4) can be transformed into an
element of D3U∗ of form (3.1.3). In particular, an element of form (3.1.4) in which
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x∗1x∗2x∗3 actually appears becomes an element of form (3.1.3) if one uses the basis
x∗1,y

∗
2,x
∗
3, . . . ,x

∗
d for U∗ with x∗2 = y∗2 + x∗1 because

x∗1x∗1 = 2x∗(2)1

and this is a unit times x∗(2)1 when the characteristic of kkk is not two. �

Lemma 3.2 ensures that we can record “φ2,0” from Lemma 3.1.(a) in an efficient
manner.

Lemma 3.2. Let U0 be a d0-dimensional vector space over the field kkk and φ2,0

be an element of D2U∗0 . Let pφ2,0 : U0 → U∗0 be the homomorphism defined by
pφ2,0(`) = `φ2,0 and let r be the rank of pφ2,0 . Then there is a basis `1, . . . , `d0 for U0

and corresponding dual basis `∗1, . . . , `
∗
d0

for U∗0 such that φ2,0 ∈D2(kkk`∗1⊕ . . .⊕kkk`∗r ).

In particular, if r = 1, then φ2,0 = a`∗(2)1 for some nonzero element a in kkk; and if
r = 2, then

(3.2.1) φ2,0 = a`∗(2)1 +b`∗1`
∗
2 + c`∗(2)2 ,

for some elements a,b,c of kkk with ac−b2 not equal to zero.

Proof. Let `1, . . . , `d0 be a basis for U0 such that `1φ2,0, . . . , `rφ2,0 is a basis for the
image of pφ2,0 and `r+1, . . . , `d0 are in ker pφ2,0 . Let `∗1, . . . , `

∗
d0

be the corresponding
dual basis for U∗0 . Write φ2,0 in terms of the basis

{`∗(i1)1 . . . `
∗(id0)

d0
|∑

j
i j = 2}

for D2U∗0 . The hypothesis that `hφ2,0 = 0 for r+ 1 ≤ h ≤ 3 ensures that φ2,0 is in
D2(kkk`∗1⊕ . . .⊕kkk`∗r ). Furthermore, if r = 1, then the coefficient of `∗(2)1 can not be
zero; and if r = 2, then `1φ2,0 and `2φ2,0 must be linearly independent (hence, φ2,0

must have the form of (3.2.1) with ac−b2 6= 0.) �

Lemma 3.3 is redundant in the sense that the assertion is a consequence of
Lemma 3.2 when r = 2. On the other hand, the constructive nature of the argu-
ment makes this statement a valuable addition to one’s tool bag.

Lemma 3.3. Let kkk be a field, U∗0 be a two-dimensional vector space over kkk, and
φ2 ∈ D2U∗0 . If dim{`φ2 | ` ∈U0} is at most one, then there is a basis z∗,w∗ for U∗0
such that φ2 = az∗(2) for some a ∈ kkk.

Proof. Let Z∗,W ∗ be a basis for U∗0 and Z,W be the corresponding basis for U0.
Write φ2 = aZ∗(2)+ bZ∗W ∗+ cW ∗(2) for some a,b,c ∈ kkk. The hypothesis ensures
that

Zφ2 = aZ∗+bW ∗ and Wφ2 = bZ∗+ cW ∗

are linearly dependent. It follows that ac = b2.
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If a, b, and c are all zero, then the conclusion holds automatically. Henceforth,
we assume that at least one of the parameters a, b, or c is nonzero; so, in particular,
a or c is nonzero. Without loss of generality, we assume a 6= 0. In this case,

aZ∗(2)+bZ∗W ∗+ cW ∗(2) = a(Z∗(2)+ b
aZ∗W ∗+ b2

a2W ∗(2)) = a(Z∗+ b
aW ∗)(2)

because b2

a2 =
c
a . At this point, we rename z∗ = Z∗+ b

aW ∗ and w∗ =W ∗. The claim
is established. �

3.4. The proof of Lemma 2.11. There are many cases depending upon the form of
φ3 in the sense of Lemma 3.1.

If φ3 has the form of Lemma 3.1.(a), then let r be the rank of pφ2,0 as described
in Lemma 3.2. Of course, 0 ≤ r ≤ 3. If r = 2, then Lemma 2.11 is established in
Proposition 4.1; if r = 1, then Lemma 2.11 is established in Proposition 5.1; and if
r is either 0 or 3, then Lemma 2.11 is established in Lemma 5.3.

If φ3 has the form of Lemma 3.1.(b), then there are two cases as described in
6.3. Case 1 of 6.3 is established in Proposition 7.1 and Case 2 is established in
Proposition 6.4.

If φ3 has form of Lemma 3.1.(c), then kkk has characteristic two and

φ3 = ay∗z∗w∗+bx∗z∗w∗+ cx∗y∗w∗+dx∗y∗z∗

for some parameters a,b,c,d from kkk. If `= ax∗+by∗+ cz∗+dw∗, then

`φ3 = 2(abz∗w∗+acy∗w∗+ady∗z∗+bcx∗w∗+bdx∗z∗+ cdx∗y∗) = 0.

Thus, `φ3 = 0 for some nonzero `∈U . In this case, Lemma 2.11 makes no assertion
about Γφ3 . �

4. THE MACAULAY INVERSE SYSTEM HAS A CUBIC TERM AND r = 2.

We prove Lemma 2.11 when φ3 has the form of Lemma 3.1.(a), with r = 2, in
the sense of Lemma 3.2. This means that, in the language of Data 2.3, there is a
basis x∗, y∗, z∗, w∗ for U∗ so that φ3 = x∗(3)+φ2,0x∗+φ3,0 with φ2,0 ∈ D2kkk(z∗,w∗),
φ3,0 ∈ D3kkk(y∗,z∗,w∗), and zφ2,0 and wφ2,0 linearly independent. In particular, the
basis elements x∗(2)y∗, x∗(2)z∗, x∗(2)w∗, x∗y∗(2), x∗y∗z∗, and x∗y∗w∗ of D3U∗ all
appear in φ3 with coefficient zero.

Proposition 4.1. Let P0 be a domain, U be a free P0-module of rank four with dual
module U∗ = HomP0(U,P0), x,y,z,w be a basis for U with dual basis x∗,y∗,z∗,w∗

for U∗. Let φ3 ∈ D3U∗ have the form

(4.1.1) φ3 =


x∗(3)+ax∗z∗(2)+bx∗z∗w∗+ cx∗w∗(2)+dy∗z∗(2)

+ey∗z∗w∗+ f y∗w∗(2)+gy∗(2)z∗+hy∗(2)w∗+ iy∗(3)

+ jz∗(3)+ kz∗(2)w∗+ lz∗w∗(2)+mw∗(3),

for elements a, . . . ,m of P0. Assume that

(a) ac−b2 6= 0 in P0,
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(b) `φ3 6= 0 for all nonzero ` in U, and
(c) Γφ3 = 0.

Then 2 is equal to 0 in P0, and, after a change of basis, φ3 = αX∗(3)+Y ∗Z∗W ∗ for
some basis X∗, Y ∗, Z∗ of U∗ and some nonzero α ∈ P0.

Proof. Let ωU and ωU∗ represent the bases x∧y∧z∧w and x∗∧y∗∧z∗∧w∗ of
∧4U

and
∧4U∗, respectively.

Claim 4.1.2. The parameters g, h, and i are zero.

Proof of Claim 4.1.2. We first compute

Γφ3(x
(3)y⊗ωU) = i(ac−b2)ωU∗,

Γφ3(x
(3)z⊗ωU) = g(ac−b2)ωU∗, and(4.1.3)

Γφ3(x
(3)w⊗ωU) = h(ac−b2)ωU∗.

Let ` be an arbitrary element of U . The expansion of Γφ3(x
(3)`⊗ωU) has four

summands; but three of the summands involve a factor of xyφ3 = 0; consequently,

Γφ3(x
(3)`⊗ωU)

= x2
φ3∧ y`φ3∧ xzφ3∧ xwφ3 = x∗∧ y`φ3∧ (az∗+bw∗)∧ (bz∗+ cw∗)

= (ac−b2)x∗∧ y`φ3∧ z∗∧w∗.

Insert

y2
φ3 = (gz∗+hw∗+ iy∗)

yzφ3 = (dz∗+ ew∗+gy∗)

ywφ3 = (ez∗+ f w∗+hy∗)

into the calculation of Γφ3(x
(3)`⊗ωU) in order to obtain (4.1.3). Combine the

hypotheses that Γφ3 is identically zero, but ac− b2 is nonzero in the domain P0 to
conclude that g = h = i = 0. This completes the proof of Claim 4.1.2.

Claim 4.1.4. The parameter d is zero.

Proof of Claim 4.1.4. We first compute that if g = h = i = 0, then

Γφ3(x
(2)z(2)⊗ωU) = (−cd2 +2bde−ae2)ωU∗(4.1.5)

Γφ3(z
(4)⊗ωU) = (ae−bd)2

ωU∗

The expansion of Γφ3(x
(2)z(2)⊗ωU) consists of six summands; four of the sum-

mands have a factor of xyφ3 = 0 or xzφ3∧ xzφ3 = 0. It follows that

Γφ3(x
(2)z(2)⊗ωU)

= x2
φ3∧ yzφ3∧ xzφ3∧ zwφ3 + x2

φ3∧ yzφ3∧ z2
φ3∧ xwφ3
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=

{
x∗∧ (dz∗+ ew∗)∧ (az∗+bw∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)

+x∗∧ (dz∗+ ew∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ (bz∗+ cw∗)

=
(

e(bd−ae)−d(cd− eb)
)

ωU∗

= (−cd2 +2bde−ae2)ωU∗.

Also, one computes

Γφ3(z
(4)⊗ωU)

= xzφ3∧ yzφ3∧ z2
φ3∧ zwφ3

= (az∗+bw∗)∧ (dz∗+ ew∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)

= (ae−bd)(z∗∧w∗)∧ (ae−bd)(x∗∧ y∗)

= (ae−bd)2
ωU∗.

Both formulas of (4.1.5) have been established. The hypothesis that Γφ3 = 0 ensures
that

0 =−cd2 +2bde−ae2 and 0 = (ae−bd)2.

It follows that

0 = a(−cd2 +2bde−ae2)+(ae−bd)2 = d2(b2−ac).

The ring P0 is a domain and b2− ac is not zero. We conclude that d = 0. This
completes the proof of Claim 4.1.4.

In Lemma 4.2 we prove that if d = g = h = i = 0, then

Γφ3(xz(3)⊗ωU) = − e2 jωU∗,(4.1.6)

Γφ3(xyzw⊗ωU) = 2e3
ωU∗,(4.1.7)

Γφ3(xz(2)w⊗ωU) = (e2k−2e f j)ωU∗ ,(4.1.8)

Γφ3(x
(2)w(2)⊗ωU) = (−ce2 +2be f −a f 2)ωU∗,(4.1.9)

Γφ3(xyw(2)⊗ωU) = e2 f ωU∗ ,(4.1.10)

Γφ3(xzw(2)⊗ωU) = (e2l− j f 2)ωU∗,(4.1.11)

Γφ3(z
(2)w(2)⊗ωU) = (−2ace2 +2abe f +a2 f 2)ωU∗ ,(4.1.12)

Γφ3(xw(3)⊗ωU) = (− f 2k+2e f l− e2m)ωU∗, and(4.1.13)

Γφ3(w
(4)⊗ωU) = (b f − ce)2

ωU∗.(4.1.14)

Claim 4.1.15. The following assertions hold:

(a) ae = 0,
(b) e j = 0,
(c) 2e = 0,
(d) ek = 0,
(e) ce2 +a f 2 = 0,
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(f) e f = 0,
(g) − f 2 j+ e2`= 0,
(h) a f = 0,
(i) − f 2k− e2m = 0, and
(j) ce−b f = 0.

Proof of Claim 4.1.15. In the proof of Claim 4.1.4, we saw that (ae− bd)2 = 0
and d = 0. The ring P0 is a domain. It follows that ae = 0. Assertion (b) is a
consequence of (4.1.6) and the hypothesis that P0 is a domain; (c) follows from
(4.1.7); (d) from (4.1.8) and (c); (e) from (4.1.9) and (c); (f) from (4.1.10); (g) from
(4.1.11); (h) from (4.1.12) and (c); (i) from (4.1.13) and (c); and (j) from (4.1.14).
This completes the proof of Claim 4.1.15.

Claim 4.1.16. The parameter e is not equal to zero.

Proof of Claim 4.1.16. This proof is by contradiction: suppose e = 0. There are
two cases: either f = 0 or f 6= 0.

If f = 0, then, d = e = f = g = h = i = 0, φ3 is equal to

x∗(3)+ax∗z∗(2)+bx∗z∗w∗+ cx∗w∗(2)+ jz∗(3)+ kz∗(2)w∗+ lz∗w∗(2)+mw∗(3),

and yφ3 = 0, which violates the hypothesis that `φ3 is nonzero for all nonzero ` in
U .

If e = 0 and f 6= 0, then, according to Claim 4.1.15, a f = b f = 0. Thus,

a = b = 0;

however, the ambient hypothesis guarantees that b2− ac 6= 0. This completes the
proof of Claim 4.1.16.

Use the fact that e 6= 0, together with Claims 4.1.15, 4.1.4, and 4.1.2 to see that

2 = a = c = d = f = g = h = i = j = k = l = m = 0.

In this case two is equal to zero in P0 and

φ3 = x∗(3)+bx∗z∗w∗+ ey∗z∗w∗ = x∗(3)+(bx∗+ ey∗)z∗w∗,

which has the form φ3 = X∗(3)+Y ∗Z∗W ∗ for some basis X∗, Y ∗, Z∗, W ∗ of U∗. �

Lemma 4.2. If φ3 is given in (4.1.1) with d = g = h = i = 0, then the assertions of
(4.1.6) to (4.1.14) all hold.

Proof. We prove (4.1.6). The expansion of Γφ3(xz(3)⊗ωU) consists of four sum-
mands. Three of the summands contain a factor of xyφ3 = 0, or xzφ3 ∧ xzφ3 = 0,
or

(4.2.1)
∧3kkk(xwφ3, yzφ3, xzφ3, ywφ3)⊆

∧3(P0z∗⊕P0w∗) = 0.

It follows that

Γφ3(xz(3)⊗ωU) = x2
φ3∧ yzφ3∧ z2

φ3∧ zwφ3



WEAK LEFSCHETZ PROPERTY AND SOCLE DEGREE THREE 17

= x∗∧ ew∗∧ (ax∗+ jz∗+ kw∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)

= x∗∧ ew∗∧ jz∗∧ ey∗ =−e2 jωU∗.

We prove (4.1.7). The expansion of Γφ3(xyzw⊗ωU) consists of twenty-four
summands. Twenty-two of the summands have a factor of

y2
φ3 = 0, xyφ3 = 0, yzφ3∧ yzφ3 = 0, xzφ3∧ xzφ3 = 0, xwφ3∧ xwφ3 = 0, or

ywφ3∧ ywφ3, or (4.2.1).

The other two summands are equal. Thus,

Γφ3(xyzw⊗ωU) = 2x2
φ3∧ ywφ3∧ yzφ3∧ zwφ3

= 2x∗∧ (ez∗+ f w∗)∧ ew∗∧ (bx∗+ ey∗+ kz∗+ lw∗)

= 2x∗∧ ez∗∧ ew∗∧ ey∗

= 2e3
ωU∗.

We prove (4.1.8). The expansion of Γφ3(xz(2)w⊗ωU) consists of twelve sum-
mands. Ten of the summands contain a factor of

xyφ3 = 0, zwφ3∧zwφ3 = 0, xzφ3∧xzφ3 = 0, xwφ3∧xwφ3 = 0, (4.2.1), or

(4.2.2)
∧4kkk(xzφ3, ywφ3, z2φ3, xwφ3)⊆

∧4(P0x∗⊕P0z∗⊕P0w∗) = 0.

It follows that

Γφ3(xz(2)w⊗ωU)

= x2
φ3∧ ywφ3∧ z2

φ3∧ zwφ3 + x2
φ3∧ yzφ3∧ z2

φ3∧w2
φ3

=

{
x∗∧ (ez∗+ f w∗)∧ (ax∗+ jz∗+ kw∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)

+x∗∧ ew∗∧ (ax∗+ jz∗+ kw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)

= (e2k−2e f j)ωU∗.

We prove (4.1.9). The expansion of Γφ3(x
(2)w(2)⊗ωU) consists of six summands.

Four of the summands have a factor of xyφ3 = 0 or xwφ3∧ xwφ3 = 0. Thus,

Γφ3(x
(2)w(2)⊗ωU)

= x2
φ3∧ ywφ3∧ xzφ3∧w2

φ3 + x2
φ3∧ ywφ3∧ zwφ3∧ xwφ3

=

{
x∗∧ (ez∗+ f w∗)∧ (az∗+bw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)

+x∗∧ (ez∗+ f w∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)∧ (bz∗+ cw∗)

=
(

f (eb− f a)− e(ec−b f )
)

ωU∗ = (−ce2 +2be f −a f 2)ωU∗.

We prove (4.1.10). The expansion of Γφ3(xyw(2)⊗ωU) consists of twelve sum-
mands. Eleven of the summands have a factor of

y2
φ3 = 0, ywφ3∧ ywφ3 = 0, xyφ3 = 0, or xwφ3∧ xwφ3 = 0.
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It follows that

Γφ3(xyw(2)⊗ωU) = x2
φ3∧ ywφ3∧ yzφ3∧w2

φ3

= x∗∧ (ez∗+ f w∗)∧ ew∗∧ (cx∗+ f y∗+ lz∗+mw∗)

= e2 f ωU∗

We prove (4.1.11). The expansion of Γφ3(xzw(2)⊗ωU) consists of twelve sum-
mands. Ten of the summands have a factor of

xyφ3 = 0, zwφ3∧ zwφ3 = 0, xzφ3∧xzφ3 = 0, xwφ3∧xwφ3 = 0 or (4.2.1).

It follows that

Γφ3(xzw(2)⊗ωU)

= x2
φ3∧ yzφ3∧ zwφ3∧w2

φ3 + x2
φ3∧ ywφ3∧ z2

φ3∧w2
φ3

=

{
x∗∧ ew∗∧ (bx∗+ ey∗+ kz∗+ lw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)

+x∗∧ (ez∗+ f w∗)∧ (ax∗+ jz∗+ kw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)

=
(

e(el− f k)+ f (ek− j f )
)

ωU∗ = (e2`− j f 2)ω)U∗.

We prove (4.1.12). The expansion of Γφ3(z
(2)w(2)⊗ωU) consists of six sum-

mands. Two of the summands have a factor of zwφ3∧ zwφ3 = 0. It follows that

Γφ3(z
(2)w(2)⊗ωU)

=


xzφ3∧ yzφ3∧ zwφ3∧w2φ3

+xzφ3∧ ywφ3∧ z2φ3∧w2φ3

+xwφ3∧ yzφ3∧ z2φ3∧w2φ3

+xwφ3∧ ywφ3∧ z2φ3∧ zwφ3

=


(az∗+bw∗)∧ ew∗∧ (bx∗+ ey∗+ kz∗+ lw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)

+(az∗+bw∗)∧ (ez∗+ f w∗)∧ (ax∗+ jz∗+ kw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)
+(bz∗+ cw∗)∧ ew∗∧ (ax∗+ jz∗+ kw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)
+(bz∗+ cw∗)∧ (ez∗+ f w∗)∧ (ax∗+ jz∗+ kw∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)

=
(

ae(b f − ec)+a f (a f −be)+a f be+ae(b f − ce)
)

ωU∗

= (2abe f −2ace2 +a2 f 2)ω)U∗.

We prove (4.1.13). The expansion of Γφ3(xw(3)⊗ωU) consists of four summands.
Three of the summands have a factor of xwφ3∧ xwφ3 = 0, xyφ3 = 0, or (4.2.1). It
follows that

Γφ3(xw(3)⊗ωU)

= x2
φ3∧ ywφ3∧ zwφ3∧w2

φ3

= x∗∧ (ez∗+ f w∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)∧ (cx∗+ f y∗+ lz∗+mw∗)
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=

∣∣∣∣∣∣
0 e f
e k l
f l m

∣∣∣∣∣∣ωU∗

= (− f 2k+2e f l− e2m)ωU∗.

We prove (4.1.14). Observe that

Γφ3(w
(4)⊗ωU) = xwφ3∧ ywφ3∧ zwφ3∧w2

φ3

=

{
(bz∗+ cw∗)∧ (ez∗+ f w∗)∧ (bx∗+ ey∗+ kz∗+ lw∗)
∧(cx∗+ f y∗+ lz∗+mw∗)

= (b f − ce)z∗∧w∗∧ (b f − ce)x∗∧ y∗

= (b f − ce)2
ωU∗. �

5. THE MACAULAY INVERSE SYSTEM HAS A CUBIC TERM AND r = 1.

In this section φ3 = x∗(3)+φ2,0x∗+φ3,0, with φi,0 ∈ DiU∗0 , and the rank of

pφ2,0 : U0→U∗0

is equal to one, where U∗ = kkkx∗⊕U∗0 and pφ2,0(`0) = `0(φ2,0) ∈U∗0 , for `0 ∈U0.
We prove that if `φ3 is nonzero for all nonzero ` in U , then Γφ3 is not identically
zero (and, therefore, Aφ3 has the weak Lefschetz property by Lemma 2.9.)

According to Lemma 3.2, the hypothesis about the rank of pφ2,0 ensures that there
is a basis y∗,z∗,w∗ for U∗ such that φ2,0 = az∗(2) for some unit a in kkk. In particular,
the basis elements x∗(2)y∗, x∗(2)z∗, x∗(2)w∗, x∗y∗(2), x∗y∗z∗, x∗y∗w∗, x∗z∗(2), x∗z∗w∗,
and x∗w∗(2) of D3U∗ appear in φ3 with coefficient zero. Thus, φ3 has the form of
(5.1.1).

Proposition 5.1. Let P0 be a domain, U be a free P0-module of rank four with dual
module U∗ = HomP0(U,P0), x,y,z,w be a basis for U with dual basis x∗,y∗,z∗,w∗

for U∗. Let φ3 ∈ D3U∗ have the form

(5.1.1) φ3 =


x∗(3)+ax∗z∗(2)+dy∗z∗(2)+ ey∗z∗w∗

+ f y∗w∗(2)+gy∗(2)z∗+hy∗(2)w∗+ iy∗(3)

+ jz∗(3)+ kz∗(2)w∗+ lz∗w∗(2)+mw∗(3),

for parameters a, . . . ,m in P0. Assume that

(a) a 6= 0 in P0 and
(b) `φ3 6= 0 for all nonzero ` in U.

Then Γφ3 is not identically zero.

Proof. The proof is by contradiction. We assume that Γφ3 is identically zero; we
prove that yφ3 and wφ3 are linearly dependent. (Of course, this contradicts the
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hypothesis that `φ3 is nonzero whenever ` is a nonzero element of U). We show
that

yφ3 = gy∗z∗+hy∗w∗+ iy∗(2)+dz∗(2)+ ez∗w∗+ f w∗(2) and

wφ3 = ey∗z∗+ f y∗w∗+hy∗(2)+ kz∗(2)+ lz∗w∗+mw∗(2)

are linearly dependent by showing that the 2×2 minors of

(5.1.2)
[

g h i d e f
e f h k ` m

]
are all zero. The 2×2 minors of (5.1.2) are

G0 = f g− eh, G1 = gh− ei, G2 = h2− f i,

G3 = gk−de, G4 = hk−d f , G5 = ik−dh,

G6 = gl− e2, G7 = hl− e f , G8 = il− eh,

G9 = dl− ek, G10 = gm− e f , G11 = hm− f 2,

G12 = im− f h, G13 = dm− f k, and G14 = em− f l.

Define F0, . . . ,F8 to be the following elements of P0:

F0 = f i−h2 F1 = f g−2eh+ il

F2 = gl− e2, F3 = im− f h,

F4 = gm−2e f +hl, F5 = hm− f 2,

F6 = de2−d2 f + f g j−2eh j+2dhk− ik2−dgl + i jl,

F7 = g jl− e2 j+2dek−gk2−d2l, and

F8 = g jm−2e f j+ e2k+2d f k−hk2 +h jl−gkl−d2m.

Let ωU and ωU∗ represent the bases x∧ y∧ z∧w and x∗∧ y∗∧ z∗∧w∗ of
∧4U and∧4U∗, respectively. In Lemma 5.2 we show that

Γφ3(x
(2)y(2)⊗ωU) = aF0ωU∗,(5.1.3)

Γφ3(x
(2)yz⊗ωU) = aF1ωU∗,(5.1.4)

Γφ3(x
(2)z(2)⊗ωU) = aF2ωU∗,(5.1.5)

Γφ3(x
(2)yw)⊗ωU) = aF3ωU∗,(5.1.6)

Γφ3(x
(2)zw⊗ωU) = aF4ωU∗,(5.1.7)

Γφ3(x
(2)w(2)⊗ωU) = aF5ωU∗,(5.1.8)

Γφ3(xyz(2)⊗ωU) = F6ωU∗,(5.1.9)

Γφ3(xz(3)⊗ωU) = F7ωU∗, and(5.1.10)

Γφ3(xz(2)w⊗ωU) = F8ωU∗.(5.1.11)
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The element a of the domain P0 is nonzero. We have assumed that Γφ3 is identically
zero. We conclude that

F0 = F1 = F2 = F3 = F4 = F5 = F6 = F7 = F8 = 0.

Straightforward calculation show that

G2
0 = −glF0 + f gF1−h2F2, G2

1 = −g2F0 +giF1− i2F2,

G2 = −F0, G2
3 = −d2F2−g(F7− jF2),

G2
4 = − k2F0 + f (−dF2 + jF1−F6), G2

5 = −d2F0 + i(−dF2 + jF1−F6),

G6 = F2, G2
7 = − f 2F2 +hlF4−glF5,

G2
8 = −glF0 + ilF1−h2F2, G2

9 = − k2F2− l(F7− jF2),

G2
10 = − f 2F2 +gmF4−glF5, G11 = F5,

G12 = F3, G2
13 = − k2F5−m(F8− jF4 + kF2), and

G2
14 = −m2F2 + lm(F4)− l2F5.

It follows that Gi = 0 for 0≤ i≤ 14; all 2×2 minors of (5.1.2) are zero; the elements
yφ3 and wφ3 of U∗ are linearly independent, and there exists a nonzero element ` of
kkky⊕kkkw ⊆U with `φ3 = 0. This contradicts the ambient hypothesis. The proof is
complete. �

Lemma 5.2. In the notation of Proposition 5.1, the formulas (5.1.3) to (5.1.11) all
hold.

Proof. We prove (5.1.3). The expansion of Γφ3(x
(2)y(2)⊗ωU) has six summands.

Five of the summands have a factor of xyφ3 = 0 or xwφ3 = 0. Thus,

Γφ3(x
(2)y(2)⊗ωU) = x2

φ3∧ y2
φ3∧ xzφ3∧ ywφ3

= x∗∧ (gz∗+hw∗+ iy∗)∧az∗∧ (ez∗+ f w∗+hy∗)

= a(i f −h2)ωU∗ = aF0ωU∗.

We prove (5.1.4). The expansion of Γφ3(x
(2)yz⊗ωU) has twelve summands. Ten

of the summands have a factor of xyφ3 = 0 or xwφ3 = 0. Thus,

Γφ3(x
(2)yz⊗ωU) = x2

φ3∧ y2
φ3∧ xzφ3∧ zwφ3 + x2

φ3∧ yzφ3∧ xzφ3∧ ywφ3

=

{
x∗∧ (gz∗+hw∗+ iy∗)∧az∗∧ (ey∗+ kz∗+ lw∗)

+x∗∧ (dz∗+ ew∗+gy∗)∧az∗∧ (ez∗+ f w∗+hy∗)

=
(

a(il− eh)+a(g f − eh)
)

ωU∗

= a( f g−2eh+ il)ωU∗ = aF1ωU∗ .
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We prove (5.1.5). The expansion of Γφ3(x
(2)z(2)⊗ωU) has six summands. Five

of the summands have a factor of xyφ3 = 0 or xwφ3 = 0. Thus,

Γφ3(x
(2)z(2)⊗ωU) = x2

φ3∧ yzφ3∧ xzφ3∧ zwφ3

= x∗∧ (dz∗+ ew∗+gy∗)∧az∗∧ (ey∗+ kz∗+ lw∗)

= a(gl− e2)ωU∗ = aF2ωU∗.

We prove (5.1.6). The expansion of Γφ3(x
(2)yw⊗ωU) has twelve summands.

Eleven of the summands have a factor of xyφ3 = 0, xwφ3 = 0, or ywφ3∧ ywφ3 = 0.
Thus,

Γφ3(x
(2)yw⊗ωU) = x2

φ3∧ y2
φ3∧ xzφ3∧w2

φ3

= x∗∧ (gz∗+hw∗+ iy∗)∧az∗∧ ( f y∗+ lz∗+mw∗)

= a(im− f h)ωU∗ = aF3ωU∗ .

We prove (5.1.7). The expansion of Γφ3(x
(2)zw⊗ωU) has twelve summands. Ten

of the summands have a factor of xyφ3 = 0 or xwφ3 = 0. Thus,

Γφ3(x
(2)zw⊗ωU) = x2

φ3∧ yzφ3∧ xzφ3∧w2
φ3 + x2

φ3∧ ywφ3∧ xzφ3∧ zwφ3

=

{
x∗∧ (dz∗+ ew∗+gy∗)∧az∗∧ ( f y∗+ lz∗+mw∗)

+x∗∧ (ez∗+ f w∗+hy∗)∧az∗∧ (ey∗+ kz∗+ lw∗)

=
(

a(gm− e f )+a(hl− e f )
)

ωU∗

= aF4ωU∗ .

We prove (5.1.8). The expansion of Γφ3(x
(2)w(2)⊗ωU) has six summands. Five

of the summands have a factor of xyφ3 = 0 or xwφ3 = 0. Thus,

Γφ3(x
(2)w(2)⊗ωU) = x2

φ3∧ ywφ3∧ xzφ3∧w2
φ3

= x∗∧ (ez∗+ f w∗+hy∗)∧az∗∧ ( f y∗+ lz∗+mw∗)

= a(hm− f 2)ωU∗

= aF5ωU∗.

We prove (5.1.9). The expansion of Γφ3(xyz(2)⊗ωU) has twelve summands.
Ten of the summands have a factor of xyφ3 = 0, xwφ3 = 0, xzφ3 ∧ xzφ3 = 0, or
yzφ3∧ yzφ3. Thus,

Γφ3(xyz(2)⊗ωU)

= x2
φ3∧ y2

φ3∧ z2
φ3∧ zwφ3 + x2

φ3∧ yzφ3∧ z2
φ3∧ ywφ3

=

{
x∗∧ (gz∗+hw∗+ iy∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ (ey∗+ kz∗+ lw∗)

+x∗∧ (dz∗+ ew∗+gy∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ (ez∗+ f w∗+hy∗)

=

det

 i g h
d j k
e k l

+det

g d e
d j k
h e f

ωU∗
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= (de2−d2 f + f g j−2eh j+2dhk− ik2−dgl + i jl)ωU∗

= F6ωU∗.

We prove (5.1.10). The expansion of Γφ3(xz(3)⊗ωU) has four summands. Three
of the summands have a factor of xyφ3 = 0, xwφ3 = 0, or xzφ3∧ xzφ3 = 0. Thus,

Γφ3(xz(3)⊗ωU)

= x2
φ3∧ yzφ3∧ z2

φ3∧ zwφ3

= x∗∧ (dz∗+ ew∗+gy∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ (ey∗+ kz∗+ lw∗)

= det

g d e
d j k
e k l

ωU∗

= (−e2 j+2dek−gk2−d2l +g jl)ωU∗

= F7ωU∗.

We prove (5.1.11). The expansion of Γφ3(xz(2)w⊗ωU) has twelve summands.
Ten of the summands have a factor of

xyφ3 = 0, xwφ3 = 0, zwφ3∧ zwφ3 = 0, or xzφ3∧ xzφ3 = 0.

Thus,

Γφ3(xz(2)w⊗ωU)

= x2
φ3∧ ywφ3∧ z2

φ3∧ zwφ3 + x2
φ3∧ yzφ3∧ z2

φ3∧w2
φ3

=

{
x∗∧ (ez∗+ f w∗+hy∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ (ey∗+ kz∗+ lw∗)

+x∗∧ (dz∗+ ew∗+gy∗)∧ (ax∗+dy∗+ jz∗+ kw∗)∧ ( f y∗+ lz∗+mw∗)

=

det

h e f
d j k
e k l

+det

g d e
d j k
f l m

ωU∗

= (−2e f j+ e2k+2d f k−hk2 +h jl−gkl−d2m+g jm)ωU∗

= F8ωU∗. �

Lemma 5.3. Lemma 2.11 holds when φ3 has the form of Lemma 3.1.(a) and r = 0
or r = 3.

Proof. First we consider the case r = 0. In this case, φ3 = x∗(3)+φ3,0 with φ3,0 ∈U∗0
and kkkx∗⊕U∗0 = U∗. Furthermore, either the characteristic of kkk is not two; or else,
the characteristic of kkk is two but there does not exist a basis y∗, z∗, w∗ for U∗0 with
φ3,0 is equal to y∗z∗w∗.

Fix some basis y∗,z∗,w∗ for U∗0 . Let x,y,z,w be the basis for U which is dual to
the basis x∗,y∗,z∗,w∗ for U∗. Let

ωU∗0 be the basis y∗∧ z∗∧w∗ of
∧3U∗0 ,

ωU0 be the basis y∧ z∧w of
∧3U0,



24 ANDREW R. KUSTIN

ωU∗ be the basis x∗∧ y∗∧ z∗∧w∗ of
∧4U∗, and

ωU be the basis x∧ y∧ z∧w of
∧4U.

According to Lemma 8.2 there is an element θ∈D3U0 so that Γφ3,0(θ⊗ωU0) =ωU∗0 .
The fact that xφ3,0 = 0 and `x∗(3) = 0 for ` ∈U0 ensures that

Γφ3(xθ⊗ωU) = x2
φ3∧Γφ3,0⊗ωU0

(θ) = x∗∧ωU∗0 = ωU∗.

Conclude that Γφ3 6= 0.
Now we consider the case r = 3. In this case, φ3 =αx∗(3)+x∗φ2,0+φ3,0, with φi,0

in DiU∗0 and `0φ2,0 not zero for `0 ∈U0 = kkky⊕kkkz⊕kkkw. It follows that yφ2,0, zφ2,0,
and wφ2,0 are linearly independent in U∗0 . Hence, yφ2,0∧ zφ2,0∧wφ2,0 is nonzero in∧3U∗0 and

Γφ3(x
4⊗ωU) = αx∗∧ yφ2,0∧ zφ2,0∧wφ2,0

is nonzero in
∧4U∗. �

6. THE MACAULAY INVERSE SYSTEM DOES NOT HAVE A CUBIC TERM, ONE

CASE.

In this section φ3 does not have any terms of the form `∗(3) with `∗ ∈U∗, but φ3

can be written in the form

φ3 = x∗(2)y∗+φ2,0x∗+φ3,0,

with φi,0 ∈ DiU∗0 , where U∗ = kkkx∗⊕U∗0 and y∗ is a nonzero element of U∗0 . (This
case can be avoided in most characteristics, but is necessary in characteristic three.)
In Propositions 6.4 and 7.1 we prove that if `φ3 is nonzero for all nonzero ` in U ,
then Γφ3 is not identically zero (and, therefore, Aφ3 has the weak Lefschetz property
by Lemma 2.9.) The proof of Propositions 6.4 and 7.1 proceed like the proof of
Proposition 5.1: we assume that Γφ3 is identically zero and we exhibit a nonzero
linear form ` in U with `φ3 = 0.

The hypothesis that Γφ3 is identically zero imposes further constraints on the
form of φ3 that we identify before beginning the proof of Proposition 6.4.

Lemma 6.1. Let x∗ and y∗ be linearly independent elements in the four dimensional
vector space U∗ over the field kkk and let

φ3 = x∗(2)y∗+φ2,0x∗+φ3,0

be an element of D3U∗ with φi,0 ∈ DiU∗0 for U∗ = kkkx∗⊕U∗0 and y∗ ∈U∗0 . Assume
that φ3,0 does not have any terms of the form `∗(3) for `∗ ∈U∗0 . If Γφ3 is identically
zero, then there exists a basis y∗,z∗,w∗ for U∗0 such that

(i) φ2,0 is in the subspace of U∗0 spanned by z∗(2), y∗(2), y∗z∗, and y∗w∗, and
(ii) φ3,0 does not involve z∗w∗(2).
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Remark 6.2. Assertion (i) can also be written φ2,0 does not involve either z∗w∗ or
w∗(2) and assertion (ii) can also be written φ3,0 is in the subspace of D3U∗0 spanned
by y∗(2)z∗, y∗(2)w∗, y∗z∗(2), y∗z∗w∗, y∗w∗(2), and z∗(2)w∗.

Cases 6.3. Once we prove Lemma 6.1, then there are two cases.

Case 1. The case where φ2,0 is in the subspace of U∗0 spanned by y∗(2), y∗z∗, and
y∗w∗ is treated in Proposition 7.1.

Case 2. The case where φ2,0 also involves z∗(2) is treated in Proposition 6.4.

Proof. We prove (i). Let y∗, Z∗, W ∗ be any basis for U∗0 . We are given a, b, c in kkk
with

φ3 = x∗(2)y∗+ax∗Z∗(2)+bx∗Z∗W ∗+ cx∗W ∗(2)+φ
′
3,

with φ′3 in the subspace of D3U∗0 spanned by x∗y∗(2), x∗y∗Z∗, x∗y∗W ∗, y∗(2)Z∗,
y∗(2)W ∗, y∗Z∗(2), y∗Z∗W ∗, y∗W ∗(2), Z∗(2)W ∗, and Z∗W ∗(2). Let ωU and ωU∗ be
the bases x∧ y∧Z ∧W and x∗∧ y∗∧Z∗∧W ∗ of U and U∗, respectively. Observe
that

Γφ3(x
(4)⊗ωU) = x2

φ3∧ xyφ3∧ xZφ3∧ xWφ3

= y∗∧ (x∗+θ)∧ (α1y∗+aZ∗+bW ∗)∧ (α2y∗+bZ∗+ cW ∗)

= (ac−b2)ωU∗,

for some θ ∈U∗0 and some α1 and α2 in kkk. The hypothesis that Γφ3 is identically
zero guarantees that

ac−b2 = 0.

Apply Lemma 3.3 and choose a new basis z∗, w∗ for kkkZ∗⊕kkkW ∗ so that

ax∗Z∗(2)+bx∗Z∗W ∗+ cx∗W ∗(2) is in kkkx∗z∗(2).

We have established (i).
We prove (ii). At this point

(6.3.1) φ3 =


x∗(2)y∗+dx∗y∗(2)+ ey∗(2)z∗+ f y∗(2)w∗

+gx∗z∗(2)+hy∗z∗(2)+ iz∗(2)w∗+ ky∗w∗(2)+ lz∗w∗(2)

+mx∗y∗z∗+nx∗y∗w∗+ py∗z∗w∗,

for parameters d, . . . , p from kkk. Let ωU and ωU∗ be the bases x∧ y∧ z∧w and
x∗∧ y∗∧ z∗∧w∗ of U and U∗, respectively. The expansion of Γφ3(x

∗(2)w∗(2)⊗ωU)

involves six summands. Five of the summands have a factor of xwφ3∧ xwφ3 = 0,

x2
φ3∧ xwφ3 ⊆

∧2(kkky∗) = 0, or
∧3kkk(x2φ3,xzφ3,xwφ3,w2φ3)⊆

∧3(kkky∗⊕kkkz∗) = 0.
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Thus,

Γφ3(x
∗(2)w∗(2)⊗ωU)

= x2
φ3∧ xyφ3∧ zwφ3∧w2

φ3

= (y∗∧ (x∗+dy∗+mz∗+nw∗)∧ (iz∗+ lw∗+ py∗)∧ (ky∗+ lz∗)

= l2
ωU∗.

The hypothesis that Γφ3 is identically zero guarantees that l = 0; and this completes
the proof of (ii). �

We treat Case 2 of 6.3. The Macaulay inverse system for this case is the φ3 of
(6.3.1) with l set equal to zero. We have recorded this Macaulay inverse system as
(6.4.1).

Proposition 6.4. Let P0 be a domain, U be a free P0-module of rank four with dual
module U∗ = HomP0(U,P0), x,y,z,w be a basis for U with dual basis x∗,y∗,z∗,w∗

for U∗. Let φ3 ∈ D3U∗ have the form

(6.4.1) φ3 =


ax∗(2)y∗+dx∗y∗(2)+ ey∗(2)z∗+ f y∗(2)w∗

+gx∗z∗(2)+hy∗z∗(2)+ iz∗(2)w∗+ ky∗w∗(2)

+mx∗y∗z∗+nx∗y∗w∗+ py∗z∗w∗,

for parameters a, . . . , p from P0. Assume that

(a) a 6= 0 in P0,
(b) g 6= 0 in P0, and
(c) `φ3 6= 0 for all nonzero ` in U.

Then Γφ3 is not identically zero.

Proof. The proof is by contradiction. We assume that Γφ3 is identically zero; we
prove that the elements

xφ3 = ax∗y∗+dy∗(2)+my∗z∗+ny∗w∗+gz∗(2) and

wφ3 = nx∗y∗+ f y∗(2)+ py∗z∗+ ky∗w∗+ iz∗(2)

of U∗ are linearly dependent. We do this by showing that the 2× 2 minors of the
matrix

(6.4.2)
[

a d m n g
n f p k i

]
are all zero.

In Lemma 6.5 we calculate Γφ3(−⊗ωU) for five elements of D3U . The assump-
tion that Γφ3 is identically zero, together with the hypothesis that ag 6= 0 guarantees
that n2−ak, ai−gn, im−gp, gk− in, and

(6.4.3) I0 =−a f 2g−d2gk−adhk+dkm2 +2d f gn+dhn2−2dmnp+ad p2

all are zero. In Lemma 6.6 we show that dk− f n is also zero.
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The entries a and g of matrix 6.4.2 are nonzero. We know that columns 1 and 4
are linearly dependent, as are columns 1 and 5, columns 3 and 5, columns 4 and 5,
and columns 2 and 4. If n 6= 0, then column 4 is a non-zero multiple of column 1
and therefore columns 1 and 2 are linearly dependent, indeed, in this case, column
1 is a basis for the column space of the matrix (6.4.2).

On the other hand, if n = 0, then the fact that columns 1,3,4,5 are all multiples
of column 1 and n is the bottom entry of column 1 forces n = p = i = k = 0.
When n = p = i = k = 0, then Γφ3(xy(3)⊗ωU) = I0ωU∗ (from Lemma 6.5) becomes
−a f 2g = 0. The parameters a and g are nonzero; hence f = 0 and once again the
matrix (6.4.2) has rank one.

Thus, in every case, xφ3 and wφ3 are linearly dependent and there is a nonzero
linear form `= αx+βw with `φ3 = 0, which is a contradiction. �

Lemma 6.5. Retain the notation of Proposition 6.4. Let ωU and ωU∗ be the basis
elements x∧ y∧ z∧w and x∗∧ y∗∧ z∗∧w∗ of

∧4U and
∧4U∗, respectively. Then

the following statements hold:

(a) Γφ3(x
(3)y⊗ωU) = ag(n2−ak)ωU∗ ,

(b) Γφ3(x
(2)z(2)⊗ωU) = (ai−gn)2ωU∗ ,

(c) Γφ3(z
(4)⊗ωU) = (im−gp)2ωU∗ ,

(d) Γφ3(z
(2)w(2)⊗ωU) = (gk− in)2ωU∗ , and

(e) Γφ3(xy(3)⊗ωU) = I0ωU∗ , where I0 is given in (6.4.3).

Proof. (a) The expansion of Γφ3(x
(3)y⊗ωU) has four summands. Three of the

summands have a factor of xyφ3∧xyφ3 = 0 or x2φ3∧xwφ3 ∈
∧2 P0y∗= 0. It follows

that

Γφ3(x
(3)y⊗ωU)

= x2
φ3∧ xyφ3∧ xzφ3∧ ywφ3

= ay∗∧ (ax∗+dy∗+mz∗+nw∗)∧ (gz∗+my∗)∧ ( f y∗+ kw∗+nx∗+ pz∗)

= −ag(ak−n2)ωU∗.

(b) The expansion of Γφ3(x
(2)z(2)⊗ωU) has six summands. Four of the summands

contain a factor of xzφ3∧ xzφ3 = 0, or x2φ3∧ xwφ3 ∈
∧2kkky∗ = 0, or

x2
φ3∧ xzφ3∧ zwφ3 ∈

∧3(kkky∗⊕kkkz∗) = 0.

It follows that

Γφ3(x
(2)z(2)⊗ωU)

=

{
x2φ3∧ xyφ3∧ z2φ3∧ zwφ3

+xzφ3∧ xyφ3∧ z2φ3∧ xwφ3

=

{
ay∗∧ (ax∗+dy∗+mz∗+nw∗)∧ (gx∗+hy∗+ iw∗)∧ (iz∗+ py∗)

+(gz∗+my∗)∧ (ax∗+dy∗+mz∗+nw∗)∧ (gx∗+hy∗+ iw∗)∧ny∗
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=
(

ai(ai−ng)−gn(ai−gn)
)

ωU∗ = (ai−ng)2
ωU∗.

(c) One computes that

Γφ3(z
(4)⊗ωU)

= xzφ3∧ yzφ3∧ z2
φ3∧ zwφ3

= (gz∗+my∗)∧ (ey∗+hz∗+mx∗+ pw∗)∧ (gx∗+hy∗+ iw∗)∧ (iz∗+ py∗)

= (mi−gp)2
ωU∗.

(d) The expansion of Γφ3(z
(2)w(2)⊗ωU) has six summands. Four of the summands

have a factor of zwφ3∧ zwφ3 = 0, or

xzφ3∧ zwφ3∧w2φ3 ∈
∧3(kkky∗⊕kkkz∗) = 0, or xwφ3∧w2φ3 ∈

∧2kkky∗ = 0.

It follows that

Γφ3(z
(2)w(2)⊗ωU)

= xzφ3∧ ywφ3∧ z2
φ3∧w2

φ3 + xwφ3∧ ywφ3∧ z2
φ3∧ zwφ3

=

{
(gz∗+my∗)∧ ( f y∗+ kw∗+nx∗+ pz∗)∧ (gx∗+hy∗+ iw∗)∧ ky∗

+ny∗∧ ( f y∗+ kw∗+nx∗+ pz∗)∧ (gx∗+hy∗+ iw∗)∧ (iz∗+ py∗)

= − kg(ni−gk)ωU∗+ni(ni−gk)ωU∗

= (ni−gk)2
ωU∗.

(e) The expansion of Γφ3(xy(3)⊗ωU) has four summands. One of the summands
has a factor of xyφ3∧ xyφ3 = 0. Thus,

Γφ3(xy(3)⊗ωU)

=


x2φ3∧ y2φ3∧ yzφ3∧ ywφ3

+xyφ3∧ y2φ3∧ xzφ3∧ ywφ3

+xyφ3∧ y2φ3∧ yzφ3∧ xwφ3

=



{
ay∗∧ (dx∗+ ez∗+ f w∗)∧ (ey∗+hz∗+mx∗+ pw∗)
∧( f y∗+ kw∗+nx∗+ pz∗)

+

{
(ax∗+dy∗+mz∗+nw∗)∧ (dx∗+ ez∗+ f w∗)∧ (gz∗+my∗)
∧( f y∗+ kw∗+nx∗+ pz∗)

+

{
(ax∗+dy∗+mz∗+nw∗)∧ (dx∗+ ez∗+ f w∗)
∧(ey∗+hz∗+mx∗+ pw∗)∧ny∗

=

−adet

d e f
m h p
n p k

+det


a d m n
d 0 e f
0 m g 0
n f p k

+ndet

a m n
d e f
m h p


ωU∗

= (−a f 2g−d2gk−adhk+dkm2 +2d f gn+dhn2−2dmnp+ad p2)ωU∗
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= I0ωU∗. �

Lemma 6.6. The parameters of Proposition 6.4 satisfy

ag2(dk− f n)2 ∈ (n2−ak,ai−gn, im−gp).

Proof. Recall that I0, from (6.4.3), is equal to zero. A straightforward calculation
shows that

−gn2I0

+(−d2g2k+2d f g2n−dim2n+dghn2)(n2−ak)

+(−dkm2n+dmn2 p)(ai−gn)

+(dmn3−adn2 p)(im−gp)

is equal to ag2(dk− f n)2. �

7. THE MACAULAY INVERSE SYSTEM DOES NOT HAVE A CUBIC TERM, THE

OTHER CASE.

We treat Case 1 from 6.3. The statement is the same as the statement of Proposi-
tion 6.4, except now “g” is equal to zero.

Proposition 7.1. Let P0 be a domain, U be a free P0-module of rank four with dual
module U∗ = HomP0(U,P0), x,y,z,w be a basis for U with dual basis x∗,y∗,z∗,w∗

for U∗. Let φ3 ∈ D3U∗ have the form

(7.1.1) φ3 =


ax∗(2)y∗+dx∗y∗(2)+ ey∗(2)z∗+ f y∗(2)w∗

+hy∗z∗(2)+ iz∗(2)w∗+ ky∗w∗(2)

+mx∗y∗z∗+nx∗y∗w∗+ py∗z∗w∗,

for parameters a, . . . , p from P0. Assume that

(a) a 6= 0 in P0, and
(b) `φ3 6= 0 for all nonzero ` in U.

Then Γφ3 is not identically zero.

Proof. The proof is by contradiction. We suppose that Γφ3 is identically zero. We
prove that there is a nonzero element ` of U with `φ3 = 0.

We first show that i = 0. Fix the bases

ωU = x∧ y∧ z∧w and ωU∗ = x∗∧ y∗∧ z∗∧w∗

of
∧4U and

∧4U∗, respectively. The expansion of Γφ3(x
(2)z(2)⊗ωU) has six sum-

mands; however five of the summands have a factor of xzφz∧ xzφ3 = 0 or a factor
from ∧2(kkkx2φ3 +kkkxzφ3 +kkkxwφ3)⊆

∧2kkky∗ = 0.

Thus,

Γφ3(x
(2)z(2)⊗ωU)
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= x2
φ3∧ xyφ3∧ z2

φ3∧ zwφ3

= (ay∗)∧ (ax∗+dy∗+mz∗+nw∗)∧ (hy∗+ iw∗)∧ (iz∗+ py∗)

= a2i2ωU∗.

The parameter a is not zero. We have assumed that Γφ3 is identically zero. We
conclude that i = 0.

Ultimately, we prove that the elements

xφ3 = ax∗y∗+dy∗(2)+my∗z∗+ny∗w∗

zφ3 = mx∗y∗+ ey∗(2)+hy∗z∗+ py∗w∗

wφ3 = nx∗y∗+ f y∗(2)+ py∗z∗+ ky∗w∗

of D2U∗ are linearly dependent. We do this by showing that the maximal minors of
the matrix a d m n

m e h p
n f p k


are zero. We view the above matrix as the submatrix of the symmetric matrix

(7.1.2) M =


a d m n
d 0 e f
m e h p
n f p k

 ,
which is obtained by deleting row 2. In Lemma 7.2 we prove that

Γφ3(x
(2)y(2)⊗ωU) =−adetM[2;2]ωU∗ and Γφ3(y

(4)⊗ωU) = detMωU∗,

where

(7.1.3) M[r1, . . . ,rs;c1, . . . ,ct ] is the submatrix of M obtained by deleting
rows r1, . . . ,rs and columns c1, . . . ,ct .

We have assumed that Γφ3 is identically zero and that a is nonzero. We conclude
that M[2;2] and M both have determinant zero. Observe that

(detM[2;1])2 = detM[1;1]detM[2;2]−detM[1,2;1,2]detM,(7.1.4)

(detM[2;3])2 = detM[3;3]detM[2;2]−detM[2,3;2,3]detM, and

(detM[2;4])2 = detM[4;4]detM[2;2]−detM[2,4;2,4]detM.

One can check these formulas by hand or one can use the characteristic free straight-
ening technique of [6] to verify these formulas; see Remark 7.3. At any rate, all four
maximal minors of M with row 2 deleted are zero; xφ3, zφ3, wφ3 are linearly depen-
dent elements of D2U∗; and `φ3 = 0 for some nonzero element ` of kkkx⊕kkkz⊕kkkw.
This contradiction completes the proof. �

Lemma 7.2. Let φ3 be the element of D3U∗ which is given in (7.1.1) with i equal to
zero and M be the matrix of (7.1.2). Adopt the convention of (7.1.3). Then

(a) Γφ3(x
(2)y(2)⊗ωU) =−a(detM[2;2])ωU∗ and
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(b) Γφ3(y
(4)⊗ωU) = (detM)ωU∗ .

Proof. The expansion of Γφ3(x
(2)y(2)⊗ωU) consists of six summands; however five

of the summands have a factor of xyφ3∧ xyφ3 = 0 or have a factor from∧2kkk(x2φ3, xzφ3, xwφ3)⊆
∧2kkky∗ = 0.

Thus,

Γφ3(x
(2)y(2)⊗ωU) = x2

φ3∧ xyφ3∧ yzφ3∧ ywφ3

=

{
(ay∗)∧ (ax∗+dy∗+mz∗+nw∗)
∧(ey∗+hz∗+mx∗+ pw∗)∧ ( f y∗+ kw∗+nx∗+ pz∗)

= −adet

a m n
m h p
n p k

 .
We also compute

Γφ3(y
(4)⊗ωU) = xyφ3∧ y2

φ3∧ yzφ3∧ ywφ3

=

{
(ax∗+dy∗+mz∗+nw∗)∧ (dw∗+ ez∗+ f w∗)
∧(ey∗+hz∗+mx∗+ pw∗)∧ ( f y∗+ kw∗+nx∗+ pz∗)

= det


a d m n
d 0 e f
m e h p
n f p k

ωU∗.

�

Remark 7.3. The identities of (7.1.4) about the minors of the 4× 4 symmetric
matrix M of (7.1.2) actually hold in a general situation. The matrix M need not be
symmetric and the size of M need not be 4.

Recall the Plücker relations on the maximal minors of a matrix. Let Y be an r×c
matrix, with r ≤ c. The entries of Y are in the commutative ring R. Let a1, . . . ,ar−1

and b1, . . . ,br+1 be integers between 1 and c and Y (s1, . . . ,s`) represents the matrix
whose columns are the columns s1,s2, . . . ,s` of Y . Then

(7.3.1)
r+1

∑
i=1

detY (a1, . . . ,ar−1,bi)detY (b1, . . . , b̂i, . . .br+1) = 0,

(where b̂i means that column bi has been deleted.) Let M be a 4× 4 matrix and Y
be the matrix

Y = [M|J],
where

J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
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Apply (7.3.1) to the matrix Y = [M|J], where M is given in (7.1.2). Take

({a1,a1,a3},{b1,b2,b3,b4,b5})

to be

({2,3,4},{1,3,4,7,8}), ({1,2,4},{1,3,4,6,7}), and ({1,2,3},{1,3,4,5,7})

to obtain (7.1.4).

8. THE THREE VARIABLES THEOREM.

In this section we state and prove the three variable version of the Main The-
orem (Theorem 1.1). Our precise formulation of the three variable version (see
Lemma 8.2) is used in the inductive part of the proof of Theorem 1.1. (See the case
r = 0 in Lemma 5.3.) Furthermore, we prove the three variable version using the
same argument as we use for the four variable version; except there are fewer cases
and each calculation is more straightforward. The reader might want to read the
present section as a preparation for reading the proof of Theorem 1.1.

Theorem 8.1. Let kkk be a field and A be a standard graded Artinian Gorenstein kkk-
algebra of embedding dimension three and socle degree three. If the characteristic
of kkk is different than two, then A has the weak Lefschetz property. If the character-
istic of A is equal to two, then A has the weak Lefschetz property if and only if A is
not isomorphic to

(8.1.1)
kkk[x,y,z]
(x2,y2,z2)

.

Proof. It is clear that the ring A of (8.1.1) does not satisfy the weak Lefschetz prop-
erty. Indeed, if ` is a nonzero linear form of A, then `2 = 0 in A; so, in particular,
` : A1→ A2 is not injective. The Macaulay inverse system for A is φ3 = x∗y∗z∗.

To complete the proof of Theorem 8.1, we adopt Data 2.3, with d = 3, and use
the method of the proof of Theorem 1.1. Let U = A1 and φ3 ∈D3U∗ be a Macaulay
inverse system for A. Assume that `φ3 is nonzero for all ` in U . Assume also that
either the characteristic of kkk is not two or that the characteristic of kkk equals two but
there does not equal a basis x∗,y∗,z∗ for U∗ with φ3 = x∗y∗z∗. In Lemma 8.2, we
prove that Γφ3 6= 0. Apply Lemma 2.9 to complete the proof. �

Lemma 8.2. Let kkk be a field, U be a three-dimensional vector space over kkk, and φ3

be an element of D3U∗. Assume

(a) either the characteristic of kkk is not two, or the characteristic of kkk is equal to two
but φ3 6= x∗y∗z∗for any basis x∗, y∗, z∗ of U∗; and

(b) `φ3 is nonzero for every nonzero ` in U.

Then Γφ3 is not identically zero.



WEAK LEFSCHETZ PROPERTY AND SOCLE DEGREE THREE 33

Proof. The proof is by contradiction. We assume that Γφ3 is identically zero. There
are two cases. Either φ3 has the form of (a) or (b) from Lemma 3.1.

We first assume that φ3 has the form of Lemma 3.1.(a). In other words, there is
a basis x∗,y∗,z∗ for U∗ so that φ3 = ax∗(3)+ x∗φ2,0 + φ3,0 with a ∈ kkk, a 6= 0, and
φi,0 ∈ Dikkk(y∗,z∗). Thus, there are parameters a,b, . . . , j, in kkk, with a 6= 0, such that

(8.2.1) φ3 =

{
ax∗(3)+dx∗y∗(2)+ ex∗y∗z∗+ f x∗z∗(2)

+gy∗(3)+hy∗(2)z∗+ iy∗z∗(2)+ jz∗(3).

Let x,y,z be the basis for U which is dual to the basis x∗,y∗,z∗ for U∗. Let ωU and
ωU∗ be the bases x∧ y∧ z and x∗∧ y∗∧ z∗ for

∧3U and
∧3U∗, respectively.

Observe that

Γφ3(x
(3)⊗ωU) = x2

φ3∧ xyφ3∧ xzφ3

= ax2∧ (dy∗+ ez∗)∧ (ey∗+ f z∗)

= a(d f − e2)ωU∗.

The assumption that Γφ3 is identically zero, combined with the hypothesis that a 6= 0
yields that d f − e2 = 0.

Apply Lemma 3.3 and change the basis for kkky∗⊕kkkz∗ in order to write

dx∗y∗(2)+ ex∗y∗z∗+ f x∗z∗(2)

in the form dx∗Y ∗(2) with e and f equal to zero for some new basis Y ∗,Z∗ for
kkky∗⊕kkkz∗.

In Lemma 8.3 we show that when φ3 is given in (8.2.1) with e = f = 0, then

Γφ3(y
(3)⊗ωU) = −d2iωU∗,

Γφ3(x
(2)z⊗ωU) = ad jωU∗ , and

Γφ3(xy(2)⊗ωU) = a(gi−h2)ωU∗ .

Recall our assumption that Γφ3 is identically zero and our local hypothesis that
a 6= 0. If d 6= 0, then i = j = h = 0,

φ3 = ax∗(3)+dx∗y∗(2)+gy∗(3),

(because e and f continue to be zero), and zφ3 = 0, which is a contradiction. Thus,
d = 0.

In Lemma 8.3, we show that

Γφ3(xy(2)⊗ωU) = a(gi−h2)ωU∗,

Γφ3(xz(2)⊗ωU) = a(h j− i2)ωU∗, and

Γφ3(xyz⊗ωU) = a(g j−hi)ωU∗.



34 ANDREW R. KUSTIN

Continue to assume that Γφ3 = 0, a 6= 0, but d = e = f = 0. It follows that h2 = gi,
hi = g j, h j = i2, and [

g h i
h i j

]
has rank at most one. Hence some nonzero linear combination of

yφ3 = gy∗(2)+hy∗z∗+ iz∗(2) and zφ3 = hy∗(2)+ iy∗z∗+ jz∗(2)

is zero, which is a contradiction. This contradiction establishes Lemma 8.2 for φ3

described in Lemma 3.1.(a).

Now we assume that φ3 has the form of Lemma 3.1.(b). In other words, there is
a basis x∗, y∗, z∗ for U∗ so that φ3 = bx∗(2)y∗+ xφ2,0 +φ3,0 with φi,0 in Dikkk(y∗,z∗),
b ∈ kkk, and b 6= 0. Thus, there are parameters a,b, . . . , j, with b 6= 0, such that

(8.2.2) φ3 =

{
bx∗(2)y∗+dx∗y∗(2)+ ex∗y∗z∗+ f x∗z∗(2)

+gy∗(3)+hy∗(2)z∗+ iy∗z∗(2)+ jz∗(3).

It is shown in Lemma 8.4 that

Γφ3(x
(3)⊗ωU) =−b2 f ωU∗ and Γφ3(x

(2)z⊗ωU) =−b2 jωU∗.

Combine the assumption that Γφ3 is identically zero with the local hypothesis that
b 6= 0 in order to conclude that f = j = 0. It is shown in Lemma 8.5 that when
f = 0, then

Γφ3(x
(2)y⊗ωU) = b(e2−bi)ωU∗ and Γφ3(y

(3)⊗ωU) = (detM)ωU∗,

where

(8.2.3) M =

b d e
d g h
e h i

 .
The assumption that Γφ3 is identically zero, together with the local hypothesis that
b 6= 0, yields that e2−bi = 0 and detM = 0. It follows that all three maximal minors
of M with row two deleted are zero. This conclusion follows from the technique of
(7.3.1) applied to the matrix b d e 0 0 1

d g h 0 1 0
e h i 1 0 0

 .
Take columns {2,3} to be {a1, . . . ,ar−1} and columns {1,3,5,6} to be {b1, . . . ,

br+1} to see that

det
[

d e
h i

]
det
[

d h
e i

]
+ idetM−det

[
g h
h i

]
det
[

b e
e i

]
= 0.
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The expressions e2−bi and detM are zero; hence, di−he is also zero. Take {1,2}
to be {a1, . . . ,ar−1} and columns {1,3,4,5} to be {b1, . . . ,br+1} to see that

det
[

b d
e h

]
det
[

b e
d h

]
+bdetM−det

[
b d
d g

]
det
[

b e
e i

]
= 0;

hence bh−de = 0. At any rate, the matrix[
b d e
e h i

]
has rank at most one; hence

xφ3 = bx∗y∗+dy∗(2)+ ey∗z∗ and

zφ3 = ex∗y∗+hy∗(2)+ iy∗z∗

are linearly dependent. This contradicts the hypothesis that `φ3 is nonzero for all
nonzero ` in U . �

Lemma 8.3. If φ3 is given by (8.2.1), with e = f = 0, then

(a) Γφ3(y
(3)⊗ωU) =−d2iωU∗ ,

(b) Γφ3(x
(2)z⊗ωU) = ad jωU∗ ,

(c) Γφ3(xy(2)⊗ωU) = a(gi−h2)ωU∗ ,
(d) Γφ3(xz(2)⊗ωU) = a(h j− i2)ωU∗ , and
(e) Γφ3(xyz⊗ωU) = a(g j−hi)ωU∗ .

Proof. (a) We compute

Γφ3(y
(3)⊗ωU) = xyφ3∧w2

φ3∧ yzφ3

= dy∗∧ (dx∗+gy∗+hz∗)∧ (hy∗+ iz∗)

= −d2iωU∗ .

(b) The expansion of Γφ3(x
(2)z⊗ωU) has three summands; however two of the

summands have a factor of xzφ3 = 0; hence

Γφ3(x
(2)z⊗ωU) = x2

φ3∧ xyφ3∧ z2
φ3

= ax∗∧dy∗∧ (iy∗+ jz∗)

= ad jωU∗ .

(c) The expansion of Γφ3(xy(2)⊗ωU) has three summands; however two of the
summands have a factor of xzφ3 = 0 or xyφ3∧ xyφ3 = 0; hence

Γφ3(xy(2)⊗ωU) = x2
φ3∧ y2

φ3∧ yzφ3

= ax∗∧ (dx∗+gy∗+hz∗)∧ (hy∗+ iz∗)

= a(gi−h2)ωU∗.



36 ANDREW R. KUSTIN

(d) The expansion of Γφ3(xz(2)⊗ωU) has three summands; however two of the
summands have a factor of xzφ3 = 0; hence

Γφ3(xz(2)⊗ωU) = x2
φ3∧ yzφ3∧ z2

φ3

= ax∗∧ (hy∗+ iz∗)∧ (iy∗+ jz∗)

= a(h j− i2)ωU∗.

(e) The expansion of Γφ3(xyz⊗ωU) has six summands; however five of the sum-
mands have a factor of xzφ3 = 0, yzφ3∧ yzφ3 = 0, or xyφ3∧ xyφ3 = 0; hence

Γφ3(xyz⊗ωU) = x2
φ3∧ y2

φ3∧ z2
φ3

= ax∗∧ (dx∗+gy∗+hz∗)∧ (iy∗+ jz∗)

= a(g j−hi)ωU∗.

�

Lemma 8.4. If φ3 has the form of (8.2.2), then

Γφ3(x
(3)⊗ωU) =−b2 f ωU∗ and Γφ3(x

(2)z⊗ωU) =−b2 jωU∗.

Proof. We compute

Γφ3(x
(3)⊗ωU) = x2

φ3∧ xyφ3∧ xzφ3

= by∗∧ (bx∗+dy∗+ ez∗)∧ (ey∗+ f z∗)

= −b2 f ωU∗.

The expansion of Γφ3(x
(2)z⊗ωU) has three summands; however one of the sum-

mands has a factor of xzφ3∧ xzφ3 = 0. Thus,

Γφ3(x
(2)z⊗ωU) = x2

φ3∧ yzφ3∧ xzφ3 + x2
φ3∧ xyφ3∧ z2

φ3

=

{
by∗∧ (ex∗+hy∗+ iz∗)∧ (ey∗+ f z∗)

+by∗∧ (bx∗+dy∗+ ez∗)∧ ( f x∗+ iy∗+ jz∗)

= −be f ωU∗−b(b j− e f )ωU∗

= −b2 jωU∗. �

Lemma 8.5. If φ3 has the form of (8.2.2), with f = 0, then

Γφ3(x
(2)y⊗ωU) = b(e2−bi)ωU∗ and Γφ3(y

(3)⊗ωU) = (detM)ωU∗,

where M is the matrix of (8.2.3).

Proof. The expansion of Γφ3(x
(2)y⊗ωU) has three summands. Two of the sum-

mands have a factor of xyφ3∧ xyφ3 = 0 or x2φ3∧ xzφ3 ∈
∧2kkky∗ = 0. Thus,

Γφ3(x
(2)y⊗ωU) = x2

φ3∧ xyφ3∧ yzφ3

= by∗∧ (bx∗+dy∗+ ez∗)∧ (ex∗+hy∗+ iz∗)

= b(e2−bi)ωU∗ .



WEAK LEFSCHETZ PROPERTY AND SOCLE DEGREE THREE 37

We compute

Γφ3(y
(3)⊗ωU) = xyφ3∧ y2

φ3∧ yzφ3

= (bx∗+dy∗+ ez∗)∧ (dx∗+gy∗+hz∗)∧ (ex∗+hy∗+ iz∗)

=

∣∣∣∣∣∣
b d e
d g h
e h i

∣∣∣∣∣∣ωU∗.
�
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Angew. Math. 42 (1851), 117–124.

[18] O. Hesse, Zur Theorie der ganzen homogenen Functionen, J. Reine Angew. Math. 56 (1859)
263–269.

[19] A. Kustin, An explicit, characteristic-free, equivariant homology equivalence between Koszul
complexes, Comm. Algebra 36 (2008), 3263–3316.
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