
PRE-TALK

Let kkk be a field. The talk is about

(∗)



standard-graded,
Artinian,
Gorenstein,
kkk-algebras
of embedding dimension 4, and
socle degree 3.

The purpose of the pre-talk is to make sense of those words and to describe a parameterization of
(*). It turns out that, in some sense,

the set of things described by (*) is parameterized by the set of cubic surfaces in P3,

I am amused by the fact that there have already been two talks in this seminar about cubic surfaces
in P3.

• A standard-graded Artinian Gorenstein kkk-algebras of embedding dimension 4 and socle degree 3
is a ring of the form

A = kkk[x,y,z,w]/I
where the variables have degree 1, I is homogeneous, A4 = 0, dimkkk A3 = 1, dimA1 = 4, and if ai is
a non-zero element of Ai for i = 1 or 2, then aiAi−3 6= 0.

• If you wanted to build such a thing, you might take an element θ ∈ P3 \ I (where P = kkk[x,y,z,w]);
then for each element in your favorite basis for P3, you would identify αelement ∈ kkk with

element−αelementθ ∈ I.

At this point, you would know all of I and A.

Example. Suppose x3 /∈ I but y3− x3,z3− x3,w3− x3,m− 0x3 ∈ I for all cubic monomials m in
x,y,z,w with m not a perfect cube. Observe that

(xy,xz,xw,yz,yw,zw,y3− x3,z3− x3,w3− x3)⊆ I.

Notice xy sends every element of P1 to I; so xy ∈ I. A linear algebra calculation (it is implemented
in Macaulay2 as fromDual) shows that we have identified all of I. I will carry this calculation out
in a second.

• I want to clean this idea up. The game of “take θ ∈ P3 \ I and for each element in your favorite
basis for P3, identify α ∈ kkk with element−αθ ∈ I” is a very complicated way of saying pick a
non-zero homomorphism φ : P3→ kkk. The cleanest way to get φ (which is a map P3→ kkk) to also
give information about P1→ kkk is to consider⊕

i

Homkkk(Pi,kkk)
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as a module over P with action: if ui ∈ Pi and w j ∈ Homkkk(Pj,kkk), then

uiw j ∈ Homkkk(Pj−i,kkk)

and
uiw j(u j−i) = w j(u j−iui).

• In the above example,
φ : P3→ kkk

sends x3,y3,z3,w3 to 1 and all other cubic monomials to zero.
I want to calculate

annP(φ) = ∪i{ui ∈ Pi | uiφ = 0}.
Observe that

Piφ = 0 for 4≤ i.
We see that

{u3 ∈ P3 | u3φ = 0}= kerφ

= (x3− y3,x3− z3,x3−w3,{u|u is a cubic monomial but not a perfect square}).

We see that xy,xz,xw,yz,yw,zw all kill φ and x2φ (which sends x to 1 and the other variables to
0), y2φ, z2φ, and w2φ are linearly independent elements of Homkkk(P1,kkk). So

{u2 ∈ P2 | u2φ = 0}= (xy,xz,xw,yz,yw,zw).

Similarly, xφ (which sends x2 to 1 and the other quadratic monomials to 0), yφ, zφ, and wφ are
linearly independent elements of Homkkk(P2,kkk); so,

{u1 ∈ P1 | u1φ = 0}= 0.

{u0 ∈ P0 | u0φ = 0}= 0.
So

annP φ = (xy,xz,xw,yz,yw,zw,y3− x3,z3− x3,w3− x3).

Theorem. (Macaulay 1916) Let kkk be a field, U be a finite dimensional vector space over kkk, P be the
polynomial ring P = Sym•U , m be the maximal homogeneous ideal of P, and D be the P-module
D =

⊕
i Homkkk(Symi(U),kkk). Then there is a one-to-one correspondence{

I
∣∣∣∣ I is a homogeneous m-primary

ideal of P

}
↔
{

M
∣∣∣∣ M is a homogeneous

finitely generated P-submodule of D

}
with

I � // annD(I) and

annP(M) M�oo .

Furthermore,
(a) the correspondence is a duality in the sense that

annP(annD(I)) = I and annD(annP(M)) = M,

(b) the ideal I defines a Gorenstein quotient if and only if annD I is cyclic,
(c) if P/I is Gorenstein, then the socle degree of P/I is equal to the generator degree of annD(I).
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• M (or a generator of M) is usually called a Macaulay Inverse System for annP M.

• I usually write DiU∗ in place of Homkkk(SymiU,kkk).

• If x1, . . . ,xn is a basis for U , then the set of monomials of degree i in x1, . . . ,xn (I write
(x1,...,xn

i

)
for this set of monomials.) is a basis for SymiU and

{m∗ | m ∈
(

x1, . . . ,xn

i

)
}

is the basis for DiU∗ which is dual to
(x1,...,xn

i

)
.

• Observe that

xi(m∗) =

{
(m/xi)

∗ if xi|m
0 otherwise.

• In my talk, there is no need to have a product structure in D•(U∗). But notice that if one puts a
multiplication on D•(U∗), then one must make sense of x(x∗x∗). Surely, the action should be the
product rule; so

x(x∗x∗) = 2x∗

x((x2)∗) = x∗

We decide that the object previously written as (x2)∗ should be equal to (1/2)x∗x∗. The moral
is that D = D•(U∗) should be given the structure of a divided power algebra. That is, for each
homogeneous element w of D (of positive degree), a sequence of elements {w(n)} should exist in
D. The rules that these elements w(n) satisfy are the same as the rules that {(1/n!)wn} satisfies
whenever (1/n!)wn is defined. See Gulliksen and Levin (Homology of local rings) or Eisenbud
(View) for the list of rules satisfied by a Divided Power Algebra. For example (w1 +w2)

(2) should
equal

(1/2)(w1 +w2)
2 = (1/2)(w2

1 +2w1w2 +w2
2),

and this should equal w(2)
1 +w1w2 +w(2)

2 . So one of the axioms of Divided Power Algebra is

(w1 +w2)
(2) = w(2)

1 +w1w2 +w(2)
2 .

• An object of (*) is equal to annP φ for some φ ∈ D3U∗ where dimkkk U = 4. One can think of
D•U∗ as a “divided power ring” in four variables. In characteristic zero, a divided power ring “is”
a polynomial ring. In this “sense” an element in D3U∗ is a 3-form in four variables; hence a “cubic
surface”.

• If U is a vector space, then
∧2•U is another algebra with a divided power structure. In particular,

if we follow the above formula, we obtain

(x12e1∧ e2 + x13e1∧ e3 + x14e1∧ e4 + x23e2∧ e3 + x24e2∧ e4 + x34e3∧ e4)
(2)

= Pf


0 x12 x13 x14
−x12 0 x23 x24
−x13 x23 0 x34
−x14 −x24 −x34 0

(e1∧ e2∧ e3∧ e4).


