PRE-TALK

Let \boldsymbol{k} be a field. The talk is about

$$
(*)\left\{\begin{array}{l}
\text { standard-graded, } \\
\text { Artinian, } \\
\text { Gorenstein, } \\
\boldsymbol{k} \text {-algebras } \\
\text { of embedding dimension } 4, \text { and } \\
\text { socle degree } 3 .
\end{array}\right.
$$

The purpose of the pre-talk is to make sense of those words and to describe a parameterization of (*). It turns out that, in some sense,
the set of things described by $\left({ }^{*}\right)$ is parameterized by the set of cubic surfaces in \mathbb{P}^{3},
I am amused by the fact that there have already been two talks in this seminar about cubic surfaces in \mathbb{P}^{3}.

- A standard-graded Artinian Gorenstein \boldsymbol{k}-algebras of embedding dimension 4 and socle degree 3 is a ring of the form

$$
A=\boldsymbol{k}[x, y, z, w] / I
$$

where the variables have degree $1, I$ is homogeneous, $A_{4}=0, \operatorname{dim}_{k} A_{3}=1, \operatorname{dim} A_{1}=4$, and if a_{i} is a non-zero element of A_{i} for $i=1$ or 2 , then $a_{i} A_{i-3} \neq 0$.

- If you wanted to build such a thing, you might take an element $\theta \in P_{3} \backslash I$ (where $P=\boldsymbol{k}[x, y, z, w]$); then for each element in your favorite basis for P_{3}, you would identify $\alpha_{\text {element }} \in \boldsymbol{k}$ with

$$
\text { element }-\alpha_{\text {element }} \theta \in I
$$

At this point, you would know all of I and A.
Example. Suppose $x^{3} \notin I$ but $y^{3}-x^{3}, z^{3}-x^{3}, w^{3}-x^{3}, m-0 x^{3} \in I$ for all cubic monomials m in x, y, z, w with m not a perfect cube. Observe that

$$
\left(x y, x z, x w, y z, y w, z w, y^{3}-x^{3}, z^{3}-x^{3}, w^{3}-x^{3}\right) \subseteq I
$$

Notice $x y$ sends every element of P_{1} to I; so $x y \in I$. A linear algebra calculation (it is implemented in Macaulay2 as fromDual) shows that we have identified all of I. I will carry this calculation out in a second.

- I want to clean this idea up. The game of "take $\theta \in P_{3} \backslash I$ and for each element in your favorite basis for P_{3}, identify $\alpha \in \boldsymbol{k}$ with element $-\alpha \theta \in I$ " is a very complicated way of saying pick a non-zero homomorphism $\phi: P_{3} \rightarrow \boldsymbol{k}$. The cleanest way to get ϕ (which is a map $P_{3} \rightarrow \boldsymbol{k}$) to also give information about $P_{1} \rightarrow \boldsymbol{k}$ is to consider

$$
\bigoplus_{i} \operatorname{Hom}_{k}\left(P_{i}, \boldsymbol{k}\right)
$$

as a module over P with action: if $u_{i} \in P_{i}$ and $w_{j} \in \operatorname{Hom}_{\boldsymbol{k}}\left(P_{j}, \boldsymbol{k}\right)$, then

$$
u_{i} w_{j} \in \operatorname{Hom}_{k}\left(P_{j-i}, \boldsymbol{k}\right)
$$

and

$$
u_{i} w_{j}\left(u_{j-i}\right)=w_{j}\left(u_{j-i} u_{i}\right)
$$

- In the above example,

$$
\phi: P_{3} \rightarrow \boldsymbol{k}
$$

sends $x^{3}, y^{3}, z^{3}, w^{3}$ to 1 and all other cubic monomials to zero.
I want to calculate

$$
\operatorname{ann}_{P}(\phi)=\cup_{i}\left\{u_{i} \in P_{i} \mid u_{i} \phi=0\right\} .
$$

Observe that

$$
P_{i} \phi=0 \text { for } 4 \leq i .
$$

We see that

$$
\begin{aligned}
& \left\{u_{3} \in P_{3} \mid u_{3} \phi=0\right\}=\operatorname{ker} \phi \\
& =\left(x^{3}-y^{3}, x^{3}-z^{3}, x^{3}-w^{3},\{u \mid \mathrm{u} \text { is a cubic monomial but not a perfect square }\}\right) .
\end{aligned}
$$

We see that $x y, x z, x w, y z, y w, z w$ all kill ϕ and $x^{2} \phi$ (which sends x to 1 and the other variables to 0), $y^{2} \phi, z^{2} \phi$, and $w^{2} \phi$ are linearly independent elements of $\operatorname{Hom}_{\boldsymbol{k}}\left(P_{1}, \boldsymbol{k}\right)$. So

$$
\left\{u_{2} \in P_{2} \mid u_{2} \phi=0\right\}=(x y, x z, x w, y z, y w, z w) .
$$

Similarly, $x \phi$ (which sends x^{2} to 1 and the other quadratic monomials to 0), $y \phi, z \phi$, and $w \phi$ are linearly independent elements of $\operatorname{Hom}_{\boldsymbol{k}}\left(P_{2}, \boldsymbol{k}\right)$; so,

$$
\begin{aligned}
& \left\{u_{1} \in P_{1} \mid u_{1} \phi=0\right\}=0 . \\
& \left\{u_{0} \in P_{0} \mid u_{0} \phi=0\right\}=0 .
\end{aligned}
$$

So

$$
\operatorname{ann}_{P} \phi=\left(x y, x z, x w, y z, y w, z w, y^{3}-x^{3}, z^{3}-x^{3}, w^{3}-x^{3}\right) .
$$

Theorem. (Macaulay 1916) Let k be a field, U be a finite dimensional vector space over \boldsymbol{k}, P be the polynomial ring $P=\operatorname{Sym}_{\bullet} U, \mathfrak{m}$ be the maximal homogeneous ideal of P, and D be the P-module $D=\bigoplus_{i} \operatorname{Hom}_{\boldsymbol{k}}\left(\operatorname{Sym}_{i}(U), \boldsymbol{k}\right)$. Then there is a one-to-one correspondence

$$
\left\{\begin{array}{l|l}
I & \begin{array}{l}
I \text { is a homogeneous } \mathfrak{m} \text {-primary } \\
\text { ideal of } P
\end{array}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
M
\end{array} \begin{array}{l}
M \text { is a homogeneous } \\
\text { finitely generated } P \text {-submodule of } D
\end{array}\right\}
$$

with

$$
\begin{gathered}
I \longmapsto \operatorname{ann}_{D}(I) \quad \text { and } \\
\operatorname{ann}_{P}(M) \longleftrightarrow M .
\end{gathered}
$$

Furthermore,
(a) the correspondence is a duality in the sense that

$$
\operatorname{ann}_{P}\left(\operatorname{ann}_{D}(I)\right)=I \quad \text { and } \quad \operatorname{ann}_{D}\left(\operatorname{ann}_{P}(M)\right)=M,
$$

(b) the ideal I defines a Gorenstein quotient if and only if $\operatorname{ann}_{D} I$ is cyclic,
(c) if P / I is Gorenstein, then the socle degree of P / I is equal to the generator degree of $\operatorname{ann}_{D}(I)$.

- M (or a generator of M) is usually called a Macaulay Inverse System for $\operatorname{ann}_{P} M$.
- I usually write $D_{i} U^{*}$ in place of $\operatorname{Hom}_{k}\left(\operatorname{Sym}_{i} U, \boldsymbol{k}\right)$.
- If x_{1}, \ldots, x_{n} is a basis for U, then the set of monomials of degree i in x_{1}, \ldots, x_{n} (I write $\binom{x_{1}, \ldots, x_{n}}{i}$ for this set of monomials.) is a basis for $\operatorname{Sym}_{i} U$ and

$$
\left\{m^{*} \left\lvert\, m \in\binom{x_{1}, \ldots, x_{n}}{i}\right.\right\}
$$

is the basis for $D_{i} U^{*}$ which is dual to $\binom{x_{1}, \ldots, x_{n}}{i}$.

- Observe that

$$
x_{i}\left(m^{*}\right)= \begin{cases}\left(m / x_{i}\right)^{*} & \text { if } x_{i} \mid m \\ 0 & \text { otherwise }\end{cases}
$$

- In my talk, there is no need to have a product structure in $D_{\bullet}\left(U^{*}\right)$. But notice that if one puts a multiplication on $D_{\bullet}\left(U^{*}\right)$, then one must make sense of $x\left(x^{*} x^{*}\right)$. Surely, the action should be the product rule; so

$$
\begin{aligned}
& x\left(x^{*} x^{*}\right)=2 x^{*} \\
& x\left(\left(x^{2}\right)^{*}\right)=x^{*}
\end{aligned}
$$

We decide that the object previously written as $\left(x^{2}\right)^{*}$ should be equal to $(1 / 2) x^{*} x^{*}$. The moral is that $D=D_{\bullet}\left(U^{*}\right)$ should be given the structure of a divided power algebra. That is, for each homogeneous element w of D (of positive degree), a sequence of elements $\left\{w^{(n)}\right\}$ should exist in D. The rules that these elements $w^{(n)}$ satisfy are the same as the rules that $\left\{(1 / n!) w^{n}\right\}$ satisfies whenever $(1 / n!) w^{n}$ is defined. See Gulliksen and Levin (Homology of local rings) or Eisenbud (View) for the list of rules satisfied by a Divided Power Algebra. For example $\left(w_{1}+w_{2}\right)^{(2)}$ should equal

$$
(1 / 2)\left(w_{1}+w_{2}\right)^{2}=(1 / 2)\left(w_{1}^{2}+2 w_{1} w_{2}+w_{2}^{2}\right)
$$

and this should equal $w_{1}^{(2)}+w_{1} w_{2}+w_{2}^{(2)}$. So one of the axioms of Divided Power Algebra is

$$
\left(w_{1}+w_{2}\right)^{(2)}=w_{1}^{(2)}+w_{1} w_{2}+w_{2}^{(2)} .
$$

- An object of $\left(^{*}\right)$ is equal to $\operatorname{ann}_{P} \phi$ for some $\phi \in D_{3} U^{*}$ where $\operatorname{dim}_{k} U=4$. One can think of $D_{.} U^{*}$ as a "divided power ring" in four variables. In characteristic zero, a divided power ring "is" a polynomial ring. In this "sense" an element in $D_{3} U^{*}$ is a 3-form in four variables; hence a "cubic surface".
- If U is a vector space, then $\Lambda^{2 \bullet} U$ is another algebra with a divided power structure. In particular, if we follow the above formula, we obtain

$$
\begin{aligned}
\left(x_{12} e_{1} \wedge e_{2}\right. & \left.+x_{13} e_{1} \wedge e_{3}+x_{14} e_{1} \wedge e_{4}+x_{23} e_{2} \wedge e_{3}+x_{24} e_{2} \wedge e_{4}+x_{34} e_{3} \wedge e_{4}\right)^{(2)} \\
& =\operatorname{Pf}\left[\begin{array}{cccc}
0 & x_{12} & x_{13} & x_{14} \\
-x_{12} & 0 & x_{23} & x_{24} \\
-x_{13} & x_{23} & 0 & x_{34} \\
-x_{14} & -x_{24} & -x_{34} & 0
\end{array}\right]\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right) .
\end{aligned}
$$

