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Abstract. We study the problern olcleterminirrg whcn the lexicograplric sum Lr.alrooln larnily of
posets trP,,fueQ) ovcr a poset Q is Cohen-Nlacaulay or shellabie. Our mainTesJlt,'a characteriz-
ation olwhell the lexicographic suur is Cohen-Macaulay, is proven using combinatorial methods
introcluced by Garsia. A similar characterization [or when thi lexicographic sun-r is CL(chainwise-
lexicograpltically)-shcllablc, is clcrived using the rccursive atorn orclering methocl clue to Bjorner

, and Wachs.

l. Inlroduction

The stucly ol'Cohcn-Macaulay poscts has produced a fruitful mingling of ideas from
cornbitlato[ics, colnntutittivc algcbra, and topology. The refcrences listecl at the end
of this paper form only a fraction of thc recent outpouring of results in this area.

In short, to a finite poset P can be associated a commutative ring R IP], and P is
Cohen-Macaulay in the ring-theoretic scnse if and only if RtP] is a Cohen-
Macatrlity ring. A sirrplicial complcx ,4(l') can also bc associatcd to P, zrnd p is said
to bc Cohen-Macztulay in thc topological se nsc if ancl only il'the hornol ogy of /(lr)
satisfies certain cortditions. The most intportant theorem in the area, clue to Reisner

[16]. states that thc ring-theoretic ancl topological clefinitions of Cohcn-Macaulay
poscts :rrc ccluivalcr-rt.

The interplay bctween the algebraic ancl topological interpretatious ligures
prominetitly in applications of Cohen-Macaulay posets (and, more generally, sim-
plicial complexcs) such as, e.g., the solution of the upper bouncl conjecture concern-
ing the numbcr o[ faces of a spherical sirnplicial cornplex [17], and in obtaining
information about thc Mobius function of p [6].

Working frorn the ring-theoretic definition, Garsia [10] has derived a purely
combinatorial and linear-algebraic characterization of Cohen-Macaulay posets.
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Univcrsity of Southern California, and by the Systern Developmelt Founclatiol.2 Ctrrrent acldress: Bell Cornmunications Rescarch, 3D-63ti, Ilohrdel. NJ 07733, USA3 Current address: F64 AGl, "lechnische Flochschule Darmstaclt. Schlossgartenstr.T, 6100
Darmstadt, Irecleral Republic of Ce rrnany
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In practice, showing that a poset or a class of posets satisfying certain conditions
is Cohen-Macaulay from the definition or Garsia's characterization is often diflicult.
A topological property, shellzrbility, hzrs proven to be very useful. It is stronger than
the Cohen-Macaulay property, but many interesting Cohen-Macaulay posets are

shellable. It has an essentially combinatorial definition. Bjcirner has introduced the

notion of lexicographic shellability, which involves slightly stronger properties than

shellability. Two properties of this type, El-shellable and Cl-shellable, are parti-
cularly natural, useful, and interesting combinatorially.

In dealing with posets having certain special properties one asks whether these

properties are preserved under standard constructions. In this paper we investigate

when the lexicographic sum lr. nProf a collection of posets P, over a poset Q is

Cohen-Macaulay, shellable, E,L-shellable, or CL-shellabe. For Cohen-Macaulay
and Cl-shellable posets we can solve the problem completely, and for shellable and

El-shellable posets we obtain partial results.

The lexicographic sum Iq. ,Pn is more general than constructions studied

previously in the area, so we shall cite connections to earlier results. In particular,
special cases of our main result for Cohen-Macaulay posets have been obtained
before by homological arguments and sometimes also by ring-theoretic arguments.

We use only Garsia's combinatorial characterization of Cohen-Macaulay posets in
hopes of making this area accessible to a wider audience. Although we succeeded in
formulating and proving our main theorem on when the ordinal sum is Cohen-

Macaulay, it must be conceded that the homological definition yields a shorter and

less complicated proof.

The paper is organized as follows. After setting our poset terminology and

surveying the Cohen-Macaulay definitions, we state our results for Cohen-

Macaulay posets in Section 4. The proof is divided into several lemmas which are of
independent interest and are proven in the next few sections. In Section 10 we survey

the area of shellability and consider when the lexicographic sum of posets is

shellable. The last two sections look at constructions of lexicographically shellable

posets.

2. Poset'l'erminology

In a poset (partially ordcrccl set) 1', a r:httin (rcspectively, curticlurin) is a totally
ordered (respcctively, totally unordcrecl) subset of P. A chain C has lcngth lCl. We

denote by 6 -'l'(P) (respectively, .,(/ : . /1(P)) the set o[ all chnins (respectively,

maxirnal chains) of P.

All posets in this papcr arc assLrmcd to be finite trnd pure, which means that all
maximal chains have the same length, called the runli, r: r(P). For xe P, r(,x) :
ri,(-x) denotcs the ronl< o[ x, whiclr is thc maxirnum lcngth o[ thc chcins in P wiLlt

mztxit-t-tum e lement .x. The rank sel P, consists of the elements ,x rvith rank r(x) : i.

If c is a chain, thcn r(c) : {r(,x)l.xe r'} is tl"te runk set of't'.

The poset P is grotlcd i[it is pure and contains a unique maxirnalelement i and a

unique minimalelement 0. We use P to denote P with a mininrunr elcment 0 and a

mzrximum elenrent i aclded to it.
The orclinal runt P @ 0 of disjoint poscts P and Q has elements PUQ ordered

by.x < l, if and only if .r and,r, are botlr in P or both in Q with -x < J, or x€P and
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ye Q.lf:)/ : {l'rlqep} is a farnily of posets indexed by the elements of a poset Q,
thcri tlre lcxicoqrapltic sunt o.l'0 ouer Q, dcnoted Lr.aPn, is the poset obtained by
replacirrgeachclemcntqeQbythe posctl,r.Morcprccisely,Ln.oPo: {11,p)lAe Q,
peP,,),ordcrcd[,y(q,p).(q',p')ifanclonlyilr7 <q'inQorq:q'inQandp<p'in
P,t. lf I', : I' for all q € Q' Ln. aP, is dcnotcd by T,a I, and calle cl the lexicoglrophic
prrtrhrct o.f P ouer Q. Observe that P @ Qis the lcxicographic sum of P and Q over
lu two clcnrcrrt chain.

An clement .x is r:oucred by an elcment y of P, written x + J,, if x < y and if x
1 z 1), ollly il z : l. A closctl interuol [.x, -y] lor -r < 

-v in P contains all elements z

such that ,t ( z < 1,, ordered as i1 I'. An oltan inter6ul (x,1,) cgptains all z such that r
< z < 1'. Thc restrir:tiort of 1' to an clcmcnt r, dcnotcd .P l.r, contains all elements z of
P wlrich are related to -x, that is, z < x or -r < z. Thc extension of P by an element x,
denoted P cc -x, is P with a new element, call it -x', which is just like x: z < x'
(rcspectively,r>-x') iIandonlyifz<x(respectively,r>-x).Thesubposetofpin
wliiclr x is tleleterl is clenotecl P\-x. The tluol poset P'I of P has the same elements as P
cloes, but with tltc ordering reverscd.

We ncxt dcscribc the lcxicographic order that ive imposc on the chnins of a poset
1'o[rankr:r(P).Forcaclrintegern)1,[n]isthcset{1,...,n}.IfS,7'c[r],write
5- < Tilcithcr I^Sl < l1'l or lSl : lTl ancl rnirr(S/7')e Ii. Label tlrc elerncnts oiP by

' thc integcrs 1,2,..., l1'1, starting with the elements of P,, then the elements of Pr, etc.
T'he.chains%'(P) ure ordered as follows: Iror c, c'e ,€(p), r,vrite c, < c' if eithei r(c)
< r(r:') or r(c): r(c') and, looking at the labels of the elcments, ntin(cAc:')ec.

A simplit'iul c:ornplcx ,4 is tt larnily ol subsets of a finite sct, callcd .fuces, sucli that
for any lace F'e / and any G c F,G e l.-f o a pure poset P we associate a simplicial
complcx /(P), called tl'rc ctrtler r:omltlex. in this way: T'he vertices (0-dimensional
faccs)arc tlte clcnrcnts olP and in gencral thc i-dimensional laces arc the chains in P
of le ngth I + 1, including A .as 

LL (- 1)-dirncnsional face.

3. Cohen-N{acaulay Posets

Onc may str-rdy a posct I']topologically by looking at its order cornplex, /(P). This
was done by Baclawski [l], who introduced the idea of Cohen-Macaulay posets.

Without going irito clctails here (cf. the survcy t6]) it suffices to mention that one
looks at the recluccd sirnplicial homology groups of l(P). Throughout the paper let
k denotc any field. Thc poset P is Cohen-M acoulu r- ouer k if every open interval (r, y)
in P is a ltoucluet, which mcans that its rccluced sirnplicial tlo*ology E,((r,y),i)
vanishes, except possibly at the top level, i : r(1,) - ,(.r) - 2. Indeed this definition
trfColien-Mac:rulay can trc extcnclccl to any simplicial complex A.Moregenerally, /r

catr bc replarccd lry any conrnutativc ring, for cxample, thc intcgers.
Reisner [1 6] and Stanley I I 7] associatcd a commutative ring R IP] with a poset

P in the following wa1,. To cach elcment i in P associate an indeterminatc _x,. With k
beingsontefield,letR[1'] : RlI,whereR : /c[r,,..., r,,l isthepolynomialringfor
the itldeterntinates from the n clements of P, and where 1: ({x;.r;1i,7 unrelated in
P)) is the ideal gcneratccl by proclucts from unrelated elcments'of P. Thus the
srrrvivingmonornialsin /lIP]arcof thc[ornrc-xj" *i]...xj';.,rvlrere ce /<,cachare N,
and i, < i2 < "' ( i,. is a chain P. Note that diifcreit poscts P nray have the same
ring ItIP].

i,i,,,

li 
.,,1

i:
t,.
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The algebraic definition of Cohen-\{acaula} posets says simply that P is Cohen-

Macaulay 6uer k if its ring RIP] is Cohr-n-\lacaulay. We mention one method for

deciding if R [P] is Cohen-Macaulal . See . ior e \amp1e. ['1] for more details. Let 0, be

the rank i polynomial in R IP] given br

*::

Then P is Cohen-Macaular o\er 1. . .,:',J t]lll\ if there exists some set

l0r, ..,llrl| s R[P] such that lor !'\-:., '=I-P- -herc erist to'tique polynomials

p r, . . ., p, with coefficients in A sr-rch :h.,.

::

*nt+i: 
;;fj,. definition or ccr,.-::-\,1.,-'., ... i.:r r: : ' ::',:-l Lr nny simplicial

complex,l by looking at its rins ,( l:-- ,' - ::. .-;'-. -- 
. '---r rls come ftom

facesofl.Reisner'sTheorenl[16-.:::;:' -:'--'rrfl- i :- ;'lenerally,for

any simplicial complex J. the :r:.' - - '-,. ':rd eise::'' - :: - -' of Cohen-

Macaulay are equivilent. It is *.'i::-. :-- . ::: 'hat the dr':l.- : ' ' -':l-\lacaulay

can be applied to flnite posr-l\ 1I1 r;--;r.- ' 1ell.iet or llt'i i-: ':r: I '-- - -" ;t lan be

shown,i..to],thater.er1'Ct.rhen-\f.......,.tiptlsct1:p-:;'....
consider pure Posets.

We will not work directlr 1'\1i:-,:.:-'.:: the topologicai trr ':-,::::-- - -:
Instead, we rely on the combinlii,r..-r.-..::;-rrr algebraic charilct-rlz".-,. :.. - .. .:-l

in Garsia [10]. Form a matr\ \r .i. ,iltich the rows collespond i,-:.-. , .-

c,e'€(P)and the coluntns trr th.::r-:)' r:r-rnl chains mte .'11(P)' 
1B.t:tlre 

lt) 
'rii: 

: '
rows and columns ol .\- as dr-scnrlj .tl :ic-titrn 2.) The entry A',, is 1 if r:, c iti, anci [t

otherwise. The matrir ,\' hits rrtn" , P I .ince its last l-'//(P)1rows form an identitl'

matrix. Now form the set ./ tri ah-.ir.: 'i hi;h ctrrrespond to rows of Ar that form the

basis in which everl rou is iinerlrlr rniei'etldent (over k) of the rows above it' Garsia

has shown that P is Cohen-\1acau1-,', i'" er' I iland onlf if this lexicographically least

basis Jl satisfies the combinatorial c.-nirtt.rn:

!,be4 r\h) - 5 - iceTlr(c):S]l

foreverySc[r].
Although this and other related chrracrerizations are inspired b1 r isualizing the

matrix N, it is more natural overall le r\ f rk ilirectiy in the ring R [P] \\-e need some

notation for this.

Fix c: {.pr,pr.,...,p,:J c P. Let rl.)be the element r1,," r., ol R[P]. Note

that x(c) : O if. is not a chain. For anr 5 : Ii]. let Ht -- H{ be the I ector subspace

of ntfj with basis {x(c)lc e%,r(c): S l. Let Lc : LPc be the element of Hr,r given

by

Ic : r-(c) fl rt,.

i. [rl
i:r(.)

which is 0 unless c is a chain. lt follows from the definition of RIP] and 0, that

tc : 
,,I 

r(rrr).

In particular, for me ..//, Lm: r(m).
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Let LI{" be the vector subspace of Hl,lgcnerated by {Lcl9eG,t(c) - S}' Since

each 0, is a nonzero clivisor, multiplic"iion by f],.tir)f 0,gives an isomorphism

from H, to LH" for all S c [r].Consequcntt,, ai-.L]fs: l{c e'€lr(c) 1S}l' Let

\i-.--Lll,.cJcr-rote thc vector subspace of 111,1 generatecl by thc LH,'.with T+s'
l)t +,)

rlrar is, by {Lcl ,r)(l,r(4E s}. Similarly dlfinc I.,.., LHr to be the subspace

generaiecl'by the fH, wiih f < S i, the lexicographic ordering on [r]'

The colditions of tile following lemma o.. ,.iy similar' We shall require each con-

dition later on. It is to our aclvantage to see that they are equivalent once and for all'

Lemma 3.1. Let !/) be a collectiort of chainsft'om the poset P. The .follov'irtg conditiotts

are equiualent'.

(3 l) For all chains c e(€, Lc t:an be written uniquely in the 'form

I, 
anLb'

r(b) q r(c)

(3 2) a) For all chains c e(€, Lc can be tpritten in the form

I uoLb.
be!'ts

r(b) c 71.1

(

b) \Lblbe ttl\ is n basis Jbr llu,'

(3 3) a) l{c e'6'lr(c): S}l :l{bertlr(b) s S}l lor all S g [r]'
b) {Lblbe !4\i is ubusis .lbr llr,r'

(34) a) l{. e'6lr(c): s}l: l{l'.t ttslr(b) g.s},1 for ult I - t'l'\ / 
u) r.,r nil n)L -,//, L,,n cai be utritten in thc form\t,',tanLb'

The proof of the lemma is a simple exercise. From the lemma and Garsia [10'

Section i1 *. obtain the follorving characterizations of Cohen-Macaulay posets'

.fheorem 
3,1. The .follov:ino conditions are equiualent .for a poset P:

(3 5) P is u Crthen-Mur:aultty otter lt'

(3 6) Tlrcre is u collectiort o.l' c:hairts o.l'P v,hich sutisf'ies the r:onditirtrts rtf Lenrnm 3'l'

(3 7) If !)t is tlrc lexic:otlraplticnlly leust seL of c:lnins td t/t tvith {Lbll) e l4\ a basis 'for\ / 
Hr,,, tlrn,, iD stttisf ies t.he t'ttnditions of Lentnm 3'l'

(3 8) I;or euery subset S o/'[r']

L,H.)

From this theorem it is straightforwarcl to verify the following well-known

elementary obscrvations about Cohen-Macaulay posets:

(3 9) A chain is Cohen-MacaulaY'

(3.10) An antichain is Cohen-Macar"rlay'

(3.11) Thc poset Il < 3,2 < 4l is not Colien-Macaulay'

(3.12) Ii thc elemcnt pe P is comparable to cvery other element of P, then P is

Cohen-MacaultryifandonlyifP\pisCohcn.Macaulay.

(3.13) The clual posct P'r is Cohen-Macatrlay itancl only if P is Cohen-Macaulay'

T,LH.,-|ut,
zE^s t'i,s

t

t
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4. 'the Lcxicographic Srrm of Cohen-Macaulay Poscts

Wo ltrovc tlrc titllowittg rcstllt ltboltt (-'ollctl-Mltcitullty 1-rtlscts.

T'heorem 4.1.T-trc posetl,,terPris Colrcn-Mnr:tniluy rttter ki/'and only i.l'all ol.the

.follon' i ry c ond i t i on s hok| :

(4 1) Ilcrch poset P, is Cohert-Mttcauloy ot)er k,

(42) 'I'he poset Q is Cohen-Macaulu); rtrtu k.

(4 3) I.l.q untl q' nra distirtt't elcnrcnts ol'Q huuinu thc sutrtc runk,lhen Pouul I',,' ore

ltotlt attti<'huitts.

An irnmediate conscqucllce of this result is

Corollary 4.1. Tha posat LaP is Coht,n-Mncutiluv- ottct'l< il' untl onl-v i.l'orte of tlrc

.foll ow in a c:o n d i t i on s ho ld'.

(4 4) Q is u r:huin untl I' is Cohcn-Mut:aulu1' tttter li, or

(4 5) P i:; urt rmtit:huin tmd Q is CLtlrcn-Mut'cruluy otter k.

'f ficore m 4. 1 will bc clcrivcd in Scction 9 frorn er scqucl]ce o[ intcrrne diate results,

Lemmas 4.1- 4.4 bclow. which alrc of intcrcst itr thettrsclvcs.

Lemmir 4.1. 'f hc slltt P, @ Ii, is Cohut-M acaulay oucr k i/' untl only if' P, trntl P, are

both Cohcn-NIttctuilcry ot:cr k.

Lemma 4.2. I.l'L,t. 12lr,, is Cohen-N'[ ut:tntlu)t oucr l<, and il' t1 and tl urc distint:t elcnterfis

hut,irtg tlrc sanrc rtuii,lhen It,, and Pn, are both untichains.

Lcmma 4.3.I.f t1 ltelonqs to lhe Colrcn-Mar:rnilay posat Q,lhen the restricliott Qlq is

al so Colre tt- M ut' uul o v.

Lemnra 4.4. I.l q e Q tlrcn tha extctlsion Q ,1 q is colrcn-Mur:uulu1' ouar l< il' rnul only if'

Q is Cohart-M ttt'uulu), ttuer k.

A licc topglogical proof ol Lcmtna 4.1 can bc [ouncl in [l9,9.1]. t]aclawski [2,

7.3] cliscove rccl Lernma 4.4 using the Leray spcctral sequellcc. Itrdeed, aftcr le arning

olour Thcorcrn 4.1, Walkcr prodr-rcccl et purcly topological prooL

Somc further well-knowr-r properties of Cohen-Macaulay posets [6] can nor'v be

suppliccl rvith clerncntary prools, givcn Theorem 3.1, once lve establish tlte results

above:

Corollary 4.2. A c,losed interttol [.*,-t,] in a Cohert-Mur:rtttlrtl, ltosel is o/so Crtlrc.n-

IVot:uuluy.

Proof . Let [r,,t,] bc an intcrval in tlre Cohen-Macaulay poset Q.Let Q t * Qz -+ " ' -]
{,, + x and '! + \n+t --+ "'--) c1,,bc unrcfinablc chains iu Q, rvhere rJ, is a tninimal

elemcnt ancl r7,,, is a maximal clement of Q. By Lemtua 4.3 and observatiort 3.12,

Qlqrlctzl...lq,,,l.tl-t,\,1,\,1r...\r1,, : f.x,1,l is also Cohcn-Macaulay. I
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F-or a posct 1, alcl 7'c [r'], ttre 1rgllt-.s clec'letl strltposcl P, is the strbposet of P

consisting ol'p e /' with r(2)e T.

Corollary 4.3. Il /, is Cghctr-Mltcltttllly ovcr /t attcl 7'- [r',], thcn 'l', is Cohen-

Macaulay.

Pro..l'.Ily'l'hcorem 3.1 thcrc exists it sct :'11 ol chiztns ol P satisfying (3'3)' Let

:4' : \be :,t|lr(b) q 7')'. Iror cvcrY S c 7,

lr,t:e'6(r')lr(c) : Sll -lr,be Alr(h) q S)l

: l{b e tfi'lr(b) q S}1.

Moreover, \L,t"ltlbe .4'\ arc lincarly inclcpcnclcnt sincc Lt'b :.(l [,.r,t ','0,)LP''b and

J],.,,,,r.0, is a nonzcro clivisor. Sirrcc l\t.i'.'bl! e t4_'t,) .: l'6'(Pr)1, \lt"hlb e l'j')i is the

rcqr-rirecl basis, ancl it now follows from (3.3) arr<l Theorern 3.1 that l"'is cohen-

Macaulay. tl

Say /' is rartk-r:ottrtec:ter. ilcach subpose t o[ P consisting of two consecutive ranks

has a connected l-Iasse diugrarn. Note that il 7' c [r] r'vith lf l > 2 and P is rank-

connectecl, thcn,Irr.has a corlrnected IIassc cliagrirrn. An antichttiu is vitcttously rank-

couttcctccl.

Corollary 4,4. Iit;cr 1' C oh c tt- M uc tttiltt y lto set i s r anl<-t:onn ect ed'

Prrto.l. Wc provc thc cotttrltpositivc. Supposc thcre is a subset f - [r'] of two

consccutivc ritrtks with /'r' ciisconncct..i' l-l''"n Pr. cittr bc writtcr-r its a lexico-

grir.phic surn ol' poscts o[ rank 2 ovcr a two point antichain, so it follows from

l-cmmit 4.2 tlrat 1)r. is tlot Cohcti-Mitcauluy' l'lcncc' by Ciorollary 4'3' P is not

Cohen-MacaulttY. tr

In the follorvilg sectiotrs we prove the four lcmmas abovc and then Tlieorem 4'1'

5. Proof of Lenrma 4.1

Wc provc tlritL thc sttrtr P, @ /), is Clohctl-Mltcattlity ovcr /t itand only if I" ttnd P'

are both Cohen-MacattlaY.

Let P: Pr @ ir, ,',:r'(Pi), r: t'(P),'(',:'€(P,),r7'':c5'(P)' ''/1i: ''/l(Pi)' and

. // : .,/1(P).

First zrssr.rtrc that I', and I', lLre both Cohcn-Macaulay' Find collections of

chains !1, 
= 

G,which satisly thc conclitions o[ Lemma 3.1. Let fi be the set of chains

\brl-)h2lbre :j)lr,ltre t4r\ of /'. A typical subset of [r] is

S: {dr < " 1du,(ri * [],<"' 1t'r+ []"\

rvitl-r S, : \ar....,u.,,) zi sltlrset of [r,] ancl S, : \{1,, "', [J,] n subset of [r']' The

number olchaitts t'e6'with rnnk set S is

l{c' e '(;rlr(t:r) : S,}l'l{.', e6rlr(r:r): Sr]l'

Similarly the number o[chains he;/J witlt rank set cotltainecl in S is

l{b, e :'},lr\h,) q S,}l l{b, e r0rlr(br) s Sr}l

Hcncc rZ satisfics cotlclitioti (3'4a) ol Lenima 3'l'

i
t

!

I

i

t.
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Let c: cr U c, be a typical cliain of P with c.ie(€i. Each maxin-ral chain of I,
containing c h:rs the [orm nr, U rn, wherc nr, is a maximal chain of P, containing r:,.

T'lrc ring Rtli-l is containccl in /{[1,]; lrcnce Lt',tttrLI',rttz: L,'(ntrUnrr) and

Lt'(r:rU r:z): I Lt',ntr.Lt',ntz - Lt"(,t.Lt',(:2.

i:2"'i,:
nt; e ..// ,

If rn is the maximal chain mrl)m, of P, then by hypothcsis

Ll',t?ri: I uu Lt',br.
bie/.4i

Thus

Lt,tlt : Ll,rptt. Lt'rtt.t2 : I dn,dnrLp(htUh2).

,, ,!',1!,1,t, ! , ,

Therefore I satisfics (a) of Lemma 3.1 and p is cohen-Macer.ulay.
To prove the converse, sllppose that P: Pr @p, is colien-Macaulay. Let

S c [r1] and let

(eLI"LI.n : LI"HL..

7 -[rr]

Multiply by 0: fJI-,,*,0, ancl allow tlic sum to bc takcn over all subsets of [r]
whiclr arc lcxicographically lcss than S to gct

U) € Lt'H, n 
,E, 

Lt'It.r.

7'q[r)

Since P is Cohen-Macaulay we have by Theorem 3.1

.(0 : \ L,'H, : 0 L LP'I{,..
7'=s' 7'=s

Theelement0ofRIP]isanon-zerodivisor;hcnce(.Ir;" Lt',Ht.,andp, isCohen-
Macaulcy by'['hcorcnr 3. l.

Ily (3.13) t'd is Cohcr-r-Macaulay since,P is. Since I,t: Ir!@pi,, by the same
argument as abovc, I'j is cohen-Macaulay. Applying (3.13) again, P, is Cohen-
Macar"rlay. I

6. Proof of Lemma 4.2
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Now we prove the (new) result that if the lexicographic sum Iq€ nP, is Cohen-
Macaulay and if q + q'eQandr(q): r(q'),then both p, and pr, are antichains.

For notational convenience, let g be the sum lq.npr. Recall that a typical
element of I is(q,x)with qe QandxePr.Themaximalchains of g areof theform
M, (qr,flxq,), (Qr,mnr\, ..., (Q,,rlrr,) where * : {qr, ..., Q)J is a maximal chain of Q
andfor eachi,m, isamaximalchain of Pr,.If Misthemaximalchainof .gzdescribed
above and q is an element of Q, then we say q e M if q is equal to one of the q,. Select
any q in Q and any n, I < n < ,(pr) Observe that

I L'(q,x):
,reP,
r(.r) -n

C

a
C(

o

u
th

I L"M
M e ./{(;/')

qeM
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because every maxilnal chain 
.?f :r containing q passes through exactly one of thepoints (q, x) as .x v.ries over ail the crcment, Jr lr, with a fixed rank.wc cstablish the Lcmma by incluction. Let rt) L suppose that if qee and.

'(q) 
< [, then either I'}, is an arttlchain or rJ is thc only element of e of its ra1k. Lct

Qr' "',qr,be thc distinct elements of Q having rank rr. Assumc that ft > 2 a,d that,(Pn)> 2.By rhe in.uctio, hyporhJrlr_,7 (;,,;,): r,(ir,;;'ii.;, is a r.nk oneclement of 1,,,,.1t follows t"rom ilic pr...airig ii.splay that

.I L.'(,t,.r) : r-,,a-f I L',(,t,.t,).
;)I,'l'j 'a ),, t,

which is an element of

L" It,n 
rI" 

L" II t.

whcre :l is the singleton consisting of the rank of (rJ, , -r), ancl where the ele rnent -x of{, lras rank 2. This ercme,t is not ,,] I, il t.)ii ,'. ,-*irich is the /t_vcctor sperccspanncd by L" o. a1 (:-s) of 'frrcorer., z.l ,y'is not cohen-Macauray. Thus, eitherft:lorr({.) :lfor1<i<ri. rrrsv'turc,'rrrub 
tr

7. Proof of Lcrnma 4.3

Next we show that if Q is Cohcn-Macaule y and r7 e Q, then tlie restriction e lrJ is alsocohen-Macaulay' T'his rlcw result can be prou.,ialiebraically by Iocalizing the ri,gRIr'] at the clenlent -Y, and it can be p.oven topoiJgi.rlly, but we willpresent 6erean elemcntary cornbinatorial proof. - i

Label B so tfiat q is the lcxicographically largest clemcnt of its ra,k. Let:tlbe theIexicographically lcast collcctiorio,f chains of O"*it1-r ILblbrwl ui^ris for 11,,,. Inthis proof L means r'l a1<1..r : ,'(Q). obscrvc irrr, lr. is a chain of e co,t.ining r7,

||il,:J J#jl"' 
to t hc fol lor'vi,g ii,.,.r, cr.rrn bi rario, invol ving l.icogra.nical ly

It':1./,'\,rl- \-.-- \' \tr,/ /- t((c\rl) U r,).
teQ
t 1.q

r(1,) = r(./)

Conseque,tly, iI be lZ, thcn 17 is.ot atr clclncnt oIb.
Thc ring nl}ql is a subring oI R [p]. If c is a clrain, thcn the maxirnal chains oI

Q lq which contain c' iire precisely the rrmximal chains of e which contain r: at-t<7 q;conscquently,

1,Qt't1. - L(t:U q).

Of coursc, both sicJcs arc 0 il- r:U 17 is not a clrain.
Let t') b".lh.t lexicographically least collection of chains of elq such that

{L(hu q)16 e tn,1is a basrirr,', tt,r,r.;t ih.";l.i'"ra (3.2) it wilr surrice ro showhat for each chain t.in ethere ure a;e /r so that

t.(r:u 11) : 
l, 

aor(hu q). (7.1)

r(h) c r(.')

I

I

I

I

i

j

I

I
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Suppose that every chain of Q whictr is lexicographically smaller tlizrn c can be
written in form (7.1). Observc that if qe c.thcn c'1r7 is lexicographically less than c;
hcnce.

r.(r:U r/) : L((c\ q)u q) : 
Z 

a6l(itu q).

/(b.) s r(c\q)

Since 
I (.\g) is containecl in r(r), this expression has the form of (7.1). Henceforth, let

S : r(r:). We may zrssume that r(q) t' S and rhar r, g B. Tltus

L(r'U ,,) : 
ulrltTL,/IU 

q).

li<c

If 6 < r', then cithcr,.(r) . S, or r(/r) :,S ancl i < c.l,et

154

(7.4)

il
I

I
i

I

( : L(, u 11) - I fi*(6u q) --
b.n
b <.t:

r(') ) - S'

b e ,.11 lrr
r(h)

-r. k\iru u).
lry,4

r(h) <S

(7 2)

(7 3)

8

F

a

r_

t)

o
o

o:
t1

el

sincc Q is c--olrcn-Macaulay, Lt'can bc writtcn uniquely in the fornr

I aoLlt
b e ,',9

r(h) c r(c')

' for all chains c' of Q.lf we write (7.2) in terms of Lb for b e tJB we have

I TnLb: I I yo5Llt \

il I

q

r(D)=SUr(q)

It e,4
r(/,)(,SLlf((r)

r(h) * S

,, h e:4
<.S r(l))q;r(r)tlq)

Obscrvc tlrat il'r(/r) : S, thcn thc right hanclc_xprcssioli for ( in (7.3)clocs not involve
L/r, bccauscr'((/)ds s r(huq) irnpricss - r.(li) whiclr impliess < i.1r,,1 < s.whiclr is
impossible. Since r,Lblb e itl\ is a basis for 111,.1, this implies that iri the left han<t
expression for ( in (7.3),yu:0 for all b with r(1l) : S. Hence,

(: I yoLb

wl

Sir: 
oE, 

Y"Llt * uE, lnLh'
r(/r) f S r(q) F r(t') c,S tl r(q)

I et o: R tQl '' RLQ|ql be the ring map which sencls all elcments of Q not compar-
able to q to zeto and all eloments comparablc to q to thcrnselves. If b is a chain of p,
then o(.Lb):1U,.Uq). Sincc (eRlelql wc havc o(() : (. Appty o to the lasr
exprcssion in (7.a) for ( to gct

(: I ),,,r.(hu() +
b e:'l

I y,,f(bU q).

r(l') F.S

lt e ,ltl
r(q)er(b)*St)r(q)

we lrave seen that if b is in fr, then q is not an elemen t of b. Thus if r(q)e r(b), then
b U q is not a chain and L(b U,1) : 0. Hcnce

( : 
oY, 

y,,L(btJ q),

r(b) f .s

and from (7.2)

Ler

Sir

cor

I wh
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L(t'U 17) : I u, L(Eu q) + ,I. ),,, L(ttu q\. (7 5),;:-! 
,,i,7,,,'"'

r(b)' ,5

All crf Ll'tc b ttnd D ort tltc right siclc of (7..5).arc lcxicographically smaller tha, c. Byitiduction each tcrm Llburr) on the right'hancl sicrelanbc put in forrn (7.1). ThusL(:u 17) c,, bc prt in [or,r (7.r)ancr elq iscorrc,-Macaur*y.

8. Proof of l-emrna 4.4

For the last of this scrics of lcmmas, we rrrc to show that if q€e,thcn tlre extension
Q ,r- q is colien-Macaulay over /c if and only ii e itsclf is Cohen_Macaulay.
_ A-ss.rnc rh.r e is Cohcr-Macatrl:ry. tcig J elr. A : 0 

-r 

r;. ;': ir, r_ LO,L: La. and r' : ,!Q): ,!q): 
.rlT) Let Q a.,rot. irr"ixtra copy of q i, O.Let !/bc a collcction of clairls o[ O'tntirryiirg theionclitions of Lcmma 3. I . By Lemrnzr 4.3,

Q is also Collcn-M:rcaulay. Let iV be ihe lexicographically lcast collection of chainsof Q rvith {tb1be:uy1 on.]r-t:-r ir.,f.tri,sacrrlinororro 17e -,,thenz\r/isrexico-
graplrically less thana.r.rd L(if\ri)': l,a. It follows tn.t if l, is inil,rl","n''qis nc,t anelement of b. Let :fr bc tl"te sei of-chains

.rtutiu,tlhe.,/tl.
We rvill sliow that :t) satisflics (3.a) o[ Lentma 3.1.

LcL '6' : '(,'(Q), 
,.rl__: ,r,(Q). ,,cl' ,, - ,r:(0); si,ril,rly, lct . // : . //(e), ,,.fr : .,il(Qi,itnd .,// : ./l(e) If S is a su6set of [r], then'

Ir,ceGl,'(.J: sll: l{e eGlr(a) : s,tj*tll + lta e77(e): s,{ed}l
: l[r: e'Clr(c): s]l + x(r(q)es)l{e eiilrlt-): s}l

where

vl'fir)e s) - {,t 
irr('7;es'

U) ot Icrwisc.
Sirnilarly

1\iefr1r(b)e ,sll: l[6 e fi1r(E)s^s,.7 *U + 1{nefi1rft) q s, q.n}t
: llh e alrp) g Sll + llhuQlhe.,d and r(hU,iq Sll
: l{b e t)}lr(b) s ,S } I + x(r(q)e s)l{6 e tt 1r1i1q s} l.

Sirrce 98 and -'] botltsatisfy (3.aa) of Lcmma 3. l, we conclude tltat Ealso satisfies thiscondition.

In order to show that :7 satisfies (3.4b) we r.nust carefully clistinguisl -t L,L, a'd. L.Let / hc tnc r.nk o[c7. Lcr ('. ('. (] be crr.iris or a.e.o ,.ril;;;i;:i,;;;, "
Lc : x(c) fl t),, Le : x(.) .fl i,. Le: ..(i) IT 0,

i€[r]\r(c) ie[r-1.,r1c1
ie[rl\r(r)

wherc

!t-
y.A

,'(.I') =. i

'x.r,'
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It is clear that

i)':1f iri+l'
Ai: oi + ,(i) i[ i : /,

,(,i)0,: v(ri)1/i ili +1.

If rir is a maximal chain of @, then there are two cases: either Qerfi or Q$fi.

Cose l. Sr-rppose Qetit. Since rir\{ is a clrain ol @. wc have

it, r1,n14; : L1rr14; : L onLl, : _f . u,,x(tt) Il 0,

he ',,9 he O i e [r] ,, r1t'.y

Sincc i e tl inrplics that r7 t' li, which implics l( r\lr), wc huvr: that

rt, r(,r\rj) : lr,,,Tna6 x(h),",,,1,|,,,,,,,.

Canccl llrc non-zcro c'livisor I and nrultiply bV t(d) to scc that

Lilrl : x(rh) : .x(q).x(rir\,1) : -L arx(bv Q) n 0,

i" :t i c [r] r(h , .t.)

Since x(q)0,: "-(4)0, for i * l, the last expression is equal to

Iarx(tiu}) n q: I arL(ivQ
i,e it, i e [r]\r(D U ri) ie ,7

This is a linear con.rbination o[ tl'te Lit, h e fr.

Case 2. Supposc that {t'fr. Then

Lfi:Lrit:la,,Lb: laox(b) n 0i
bel,j he,l re[r] \r(h)

Since A,: 0,for i * / ancl 0, : 0r * x({), we have

Lfft: laoLt- | 1J,,,Lnr
hr '4 

T:,i
for sorne f,, e /c. By Case I eacl't Lm is a linear combination of tt'rc L(n u {), and thus,
of the fh.

I{ence, for all maximal chains fi of Q,

Lfit : l_a6L6.
be:tl

'I'hus 
Q is Cohen-Macaulay.

We now prot)e the conuerse. Assume Q x q is Colien-Macaulay. Let the elements
of Qwiththesamcrankas qbeq: et,...,Qu,.lf thecharacteristicof thefieldkisnot
2, let fi:2 and A:Qcrqrc/....{Q,,. If char k:2, let fl:3 ancl A:
Q rr qr cc "' oc 7n,e Qt cc "' cc q^. By repeated applications of the direction of
the Lemma which has been established we have Q rr qis Cohen-Macaulay irnplies Q
is Cohen-Maczrulay.

As alr.vays let 6 be the chains ol Q, ?i the chains of A, L: Lo, L - LA, irn<l r :
,(Q) : r\Q). Let .l', Q - p be the poset rnap which is the i<lentity on Q and which
send each duplication of qi to q,. Extend./'the natural way to obtain melps .f: (; -. r[
and f: RlAl -- R[0].

9
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Claim l. I.l'1,,,"d",Lc :0, tltenZr.,rus6,Ld: 0.

Proo/" Tlie sum 1,.,, u,I-c: 0 mc.r.rs th^t if nr is a maximarchain of p and (,11..., (i,1,are thc sutrchains.f rtr. tltctt I[.,3,, : 0. If rir is * nr.xilrirl chain otQ ancl d,,..., i,arc thc sr-rbchains of.rir, rhcn flrr) isa nraxim,l.crrain of e ancl ./(e r), . . . ,./(e r)are trrcsubclrains of ./'(tit). Hence I[, q,.,, :0, ancl l,r,lo,rrr'Ld: 0.

Claim2. If(:l, L)L

tla/inecl earlier. ''' d''Lc' atd ( : Iu ' e a r,',Le ' 
t lten /'(() : rt( where n : 2 or 3 rtr

ProoJ" Lct / bc thc ra,k of the erernents q\,:.., 11,,.rf re r(c),thcn trrere are, chainsi e?i with-l(,-) : r', but for each of rhesc 
1i'r4':'Lr'.'r'fi;r(r), ilre, rhcre is o,ry onecltairr r-eZ wirh .l (?) :c, but J'(L4 : r.tLc.li follows that ./(() : n(.

" -Yt 
Lrse. (3 4) of Theorertr 3. I to show tl'tat Qis cohen-Macaulay. Let s be a subsetof [r] and lct . : 

I,1.]=,r, 
ct,l,t: 

^: I,r.r..s u",.Lc bean elernent of LIt.O Ir.., LH.,.. Let
io.r.s,-.: o,*,,Ltltiroiro*rr.o,f,iirii"'r rh;ia;r"lrr'"qr"rror,r.r.rar,..,Lc,thus
( is in La p nI, .^, rnp. since Q is Cor,cn-Ma;;i;;: ir,, ;, -. L, p oyrheorem3'l' Tlrus for some 

^frr,i: I,t.ris/..L.. Now consiclcr f6':L;,,rr,,,i6u) o,
analysis in the proof of Claim 2 it follows that J-(():I,,.,s., fl,Lr,,wltere

,, I L lto.itter'(c)
/l':{ /t,-1=.

[-ruflr. wlrcr-e d: .f -,(r,),if lgr(c).

Thus .1(i)€ I, ,,.,- LIIt .,By C_-lairn 
?, ,/((): ,(, arrd, by c.lesig,, , is a unit; therefore (itsclI belo'gs to r, +, Lfur..a,a p'is'io*,.n--Mo.uuioy. 

)t.,tt) tL rr (t urrrr' Ltrsr 
tr

9. Proof of Theorem 4.1

wc now combine tlte lcmrnas abovc to provc our nruin thcorcrn charactcrizi,gwhcn t,c lcxicog*rplric r'.,,r, fr. ,lr,isCo'cn-Macauluy over /t.The poset e is rhe ,u,-,-, fl $=A') g... @ 0, where, for all i, e, isthe unio, ofconsecutive ranks of Q, arrcl Q, is ciihcr a singlcion or clsc c,ch rank of e, has rnorellutrr onc clclncrrt. Tlrus f l.'/, : ,An' r t)

Ir r,. npn is cor,.nf,ia.ilJirr,\i;;i o1'fl#n.,a 4.r eacrr Ln.a,,p, is Cohen-Macaulay' If e, is the singreron {q,i,'thcn z,r'rnir;'t i;rr*ap, is coher-Macauray. Ifeach rank of Q, has rnorc than on" 
"i.,r.rt, 

inJn uy I_.,r* tr4.2, pnis an anticrrain foreach qe Q'' Thus (o;') ilo (a.3) of tl're Tlieorem holcl. I3y repearccl applicario, ofLemmn 4'4 any Q, which is not a singlcton is cohcn-M:rcaulary, tlrr-rs by Lcmrna 4.1,Q :-Pr @'. .@ 
eN is Cohen-Mr"uiluy, which is A.2\.

Conversely, ii co1<l.rtions (4.r) ilrrougrr (43) 
'i-ia, 

trrcn each e, is cohen_Macaulay by Lemma 4.1, hencJ bii L"r-,rno 4.4 eicl^tLr.o,p, is Cohen_Macaulay.Thus fn.-gpris cohe._Ma.nrtuytf l_emma 4.r. 
useei r( Is \-ollen-lvla 

tr
Notc that Lemma 4'3 is not usecl clirectly in the proof above. FIowcvcr, it is usedto prove Lemma 4'4, which is ncccled to prove tl-re theorem. It is also cruci:rl in theproof wc gilve to Corolla rv 4.2.

(
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10. Shellable Posets

Wc ttow tunt our attcntion to thc notion ol shcllability, which originatccl in the
sttrcly of polylrctlra. A [initc sirnplicialcomplcx ,4 is purc rl-dinu,nsiorrrrl il'its maxirnal
ftrccs, callccl .fut:cl,s, cach contain / + I vcrticcs. Such a sirnplicial cornplcx is.shcl-
lahle il its lacets can be ordcrcd I'1, Ii2, ..., Ir, in such a way that for all i <.i thcrc
exists /< <.i sLrch that l-, n /j 

= 
I;k) I;jand llo I til : 11. Such an ordcring of thc facets

of .4 is callcd a slutllinq.

McM ulle n I I 5] Lrsed shcilability to provc Motzkin's uppcr bound conjecturc for
corrvcx polytopes l.The conjecturc gives the maxinrum possiblc numbcr l',Qt,tl) ctf

i-dirrensional laces of any d-clinrcnsional convcx polytopc rvith n verticcs. Klce
cxtendccl thc uppcr bouncl coniccture to artritrar-y manifolcls. Thc cerse in whiclt the
gcometric realizatiott l,1l of / is u sphere was provcn by Stanley [17]. Shcllability
cor-rld not bc usecl beoausc there exist triangulations ol spheres which are not
shellablc. Instcacl, Stanley uscd tlre C--ohcn-Macaulay property, lvhich holcls for I if
l,/l is a sphcrc.

For lirrthcr information on shcllability scc [5,7-]. B.iorner [-5, p.183] notcs that
shellable complcxes are Cohen-Macaulay but thc converse is not true in gencral.

Indeecl, although Cohen-Macaulayness is preserved under homeomorphisms,
shcllability is Irot, c.g., consiclcr'thc nonshcllablc sphcrc rnctrtioncd abovc.

Shellability carrics clorvn to orcler theory dircctly by saying a posct I'is slrclluble
ilits orclcr conrplcx z1(1') is shcllable. Most intcrcsting cxanrplcs cllCohcn-Macaulay
posets are acttrally shcllablc, c.g., finitc distributive, scmimodulur, und sr-rpe rsolvable
latticcs. So thc intcrcst in shcllability lor orcler theorists is tliat onc can show
combirtatorially that a poset is Cohen-Mzicauluy (and thereforc has nice algcbraic
ancl combitratorial interpretations) by giving a shclling orcler o[its maximal cltains.

Gcne raliziltg a technique of Stanley for labelling thc eclges ol thc Hasse diagram
of ccrtairt nice lzrtticcs, Bjiirncr [5] introduced ii condition on such a labclling for any
finite purc posct P, now callcd Ill,-shellability, which irnplies shellability. A slightly
nlore gcttcral vcrsion of this conccpt, Cl-shcllability, was forrnulatecl by Bjorner
trnd Wachs in [7] and [urthcr studicd in [8]. Thus EL-shellability implies CL-
shcllability, rvlrich in turn inrplies shellability. It has bcen shorvn that shellability
need not irnply Cll-shcllability, by Vincc and Wachs [18] and by walker [20].
I{owcvcr, it rcntains an opcn problcrn to lind a CL-shcllablc poset wliich is not
EL-shcllable. In practice thc notion of CL-shellability has proven to be particularly
vah-rable bccause contructing a CL-shellability labelling of the maximal chains of a
posct is typically the casicst way to show that a poset is Cohcn-Macaulay. Refer to
the survey [6] for more about thcsc propcrties. In subsequcnt sections lve define EL-
and CL-shcllability and consiclcr their ordinal sums.

Now we consider constructions clfl shellable poscts. Using the shelling order,
Bjorrrer 15, 4.4f proved the analoguc of our Lemma 4.1 :

Theorcm 10.1.'l'Irc ltoset P O 0 is slrclluble i/' und onl1, if' P tttttl Q ttt'e shtllthle.

Silrcc slrcllablc poscts arc C-'ohen-Macaulay [5], thc:rnulogue ol Lernma 4.2for
shellable poscts is imtncdiatc from Lcrnnra 4.2.Thc analoguc of Lcmrnu 4.3 is easy to
verily:

'l'hcorem 10.2. I I Q is slrcllublc untl tf q e Q. thcn Qlq is slrcllublc.
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If Q is slrellablc and 17 e Q, one can also construct a shelling of the exteusion
Q o' q, as follows: In a given she lling of tlrc mnximum chains of Bleach time zr c6ain
ilpllcrlrs which cotttaitts 17, cull it r', inscrt inrmccliltcly 1[lci it thc clt.i, c,,:tUt,q'\t\{q), rvhcrc r7' is thc ltcw copy ol' r7. 'l'his ;rr,rr., 6pc clircctio, ol' the
runuloguc o[ I_crnrna 4.4:

Theorcm 10.3. I I Q is shelluble and. tl' q e e, tltert e x q is slrcllablc.

Tlte conVerse of this theoretn, which is the analogue of the other clirection of
Lenlma 4'4, seerns eclually natural, but we have not sLicceeclecl in proving it:
Con.jes|m'.. If r7 e Q and if Q ,x q is shellable, tlrcp e is shellable.

This conjcctttrc is thc last piccc o[thc pnz.r.lcnccdccl to provc thc analogLrc o[our
nrain orclinal sum thcorcm. 'I-rrLrs it is cquivalcnt to this

Crttricclure' Theorctr 4.1 rcmains truc rvhen "Colicn-Mucaulay,' is re placed by"slrclla hlc".

l'hc slrcllable analogue of Corollary 4.1 for In p woulcl follow from this conjcc-
turc' The analogue of Corollary 4.2,w|ich says frrit u,., intcrval in a shcllable poset is
shcllable, was tlotcd in15.4.2fanclfollows fronr tlrc analog.-,",rri.,rnl, +.i, n;orr.,.
provcd tltc analoguc of Corollary 4.3 in [5,4.1 ], rhat nurk-sclcctccl suSposcts p, o[a
shcllable prosct,P:tre shellable. T'hat cvcry siicllablc posct is rapk-connectecl, the
analogttc ol'Corollary 4.4, is well-known ancl irnntcdiate front thc dcfinitio, of
shellablc.

1 l. El-Shellablc posers

We norv present the clelinition o[ EL-shcllablc poscts, as introduced in [5], ancl
study sorle of their propcrtics. "EL" stands for:'edgewise-lexicographicaily,,. As-t:']]: P is gradecl (trot nrercly purc). We label each cdle .\ --+ -!,in the l,lasse di:rgran-r
of 1' by an integer 2('r * l')' Arr etlgc-labclling 2 ir.rdr-rccs zr labciling of cach r-rnrefinablec.hairr,':(*n-,rr.+ 

. --\k)in/,by )k):(2(x,,-r.,),...,2(,io r-.xo)).We rnay
tlrcn ordcr tltc maxitnal chains in an interval Ix.1,] of lr'iexicographicllly according
to the corresponcling labels: We write (: { r.r,;if i(llcxicographically precedes 2(c,[
A.clrairr 

1:(,:l-'11 -"'--'-rr) is irt.r:.retu.sinrr ii'){r,r-";,i<1"(;; :;r) 
= <

/-(-xr,--r - -rr)./'is saicl to be E/--.shcilahre if it acrmits u tot .iiing,r. oiitr.ige, srch
that for every interval [.v, t,] i1 1r,

(11.1) There is a u,ique increasing maxirnal clrain c in [.x,.y], ancl

(11.2) c I r.(, for all other rnaximal chains c,in f x,,1,].

Such a labelling 2 is callcrl ut EI__labellitrq. All clistributivc, senrintoclular ancl
supcrsolvable latticcs arc t_lL-shcllablc posets.

Less is known about how constructions are prcserved for EL-sliellability than
for the otlie r propcrties. As noted by Bjorner 15, ! 4lit is easy to prove the alalogue
of o,c directio, o[our Lemma 4.t. Recall that p is-p r,vitn o o,r,r ir;;;.

Thcorern ll.l. tl P, Q rtrc rir,-shcilablc, trt.r p 
@ Q i,s riL-,srreilobre,

(

i
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The analogue of the other direction of Lemma 4. 1, the converse of the theorem
above, renlains open. The analogue of Lemma 4.2 follows directly from 4.2itself. Thc
analogue o[ L.emma 4.3 is again casy to verify:

'l'ltcorcrn ll.2.llqi.sutrt'lcnrcntrfl'tht: IiL-shallultlaposctQ,tltcnQltlislil,-sht:lkhle.

Both directions of the analogue of Lemma 4.4, concerning whether the extension
Q x q is EL-shelluble, are open. Onc needs to prove both dircctions of this analogue
as well as the missing direction of the analogue of Lemma 4.1 to prove the zrnalogue
o[ tlie main result for ordinal surns, Theorem 4.1. For now, we will rnerely rnake this
weaker conjecture, which gcneralizes Theorem I l.l above:

Coniecture. If cach poset P* Q e Q, is EL-shellable, if @ is E,L-sliellablc, and il p, and

Pr, are both antichains whcnever Q,4'e Q have the same rank then fl},, ,,
EL-shellable .

Thc anulogrrc ol Corollary 4.2. whiclr lollorvs lronr Tlrcorcrn ll.2 abovc, hus
prcviously bccn vcril'icd by lljijrncr 15,4.2): An intcrval in an lrl-shcllablc poset is
El-shellable. Flowever, the analogue of Corollary 4.3 renrains opcrl: Is the rank-
selected subposct P, of an EL-sheltable poset P necesserrily EL-shellable'/ This is
frustrating inasmuch as Corollary 4.3 guarantees that P, is at least Cohen-
Macaulay. Finally, wc t-totc that EL-shellable ltoscts are rank-cclnnccted by Corol-
lary 4.4.

12. Cl-Shellable Posets

Bjorner and Wachs [7] introduced a slightly more general definition of lexico-
graphic shellability than E,L-shellability, called CL-shellability, "cL" for
"chainwise-lexicographic". As we noted earlier, this notion is known to be strictly
stronger than shellability itself. By design it is weaker than El-shellability, and
probably strictly weaker. Although there are some classes of posets that have been
shown to be Cl-shellable for which no E,L-labelling has been found, e.g., Bruhat
order, no one has yet proven that there exist any Cl-shellable posets which are not
EL-shellable [6].

The idea of CL-shellability is to label the chains themselves, rather than the
edges, and to put a condition on the labelling which is sufficiently strong to preserve
the argument that the lexicographic order on the maximal chains of P is a shelling,
so that P is shellable (and, hence, Cohen-Macaulay).

Let P be a graded poset of rank d + 2. We consider labellings ,t of the maximal
chains fr.: (0: xg-xl +...-+xri+l : 1) of P where each such chain receives a
label 1(m) : (ArQn), lr(*), . . . , )o*r(ru)), each tr,(nl an integer, such that whenever
two maximal chains m and nt' coincide in their first k edges, then ,1,(ll) : li(tn), for
I < i < k. If [x, y] is an interval and c is an unrefinable chain from 0 to x, then the
pair (c, [r, y] ) is called a rooted interual.If b is a maximal chain in [x, y], it makes
sense to define the rooted label 2.(b) : (2,1,y*r (*), ..., ).,,r.,(nl), where m is any
maximal chain in P containing c and b, sincd this label doei not depend on rn. We
now lexicographically order the maximal chains b in the roote<I interval (., [r, y]) bV
b < Lb' is )""(b) lexicographically precedes ),'(b'). The chain b is increasinq if

\_
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)r(x1+r (,r) . "' <,1,,.r,(,r). Then we can define P to be CL-shellable if forevery rooted
interval (., [r, -y] ),

(12.1) there is a unique increasing maximal chain b in(c,[x,y]), and

(122) b < r_b'for all other maximal chains b,in(c,[r,y]).
Such a labelling 2 is called a CL-lahellintl.

An El-labelling of the cdges of a poset induces a CL-labelling of tl-re maximal
chains automatically, but not conversely: A given erlge x -, y receives different
labels, depending on the root taken from 0 to x, so no edge-labelling is induced by a
CL-labelling.

For CL-shellable poscts all analogues of the results above for Cohen-Macaulay
posets work. In particular, we shall show this:

Lr.aP, is CL-she.llable i/' ond only if' all rd' the followina

(12.1) [:!uch poset Qi, cr-rtrcilabte,

(12.2) The poset Q is ct-shellable, ancl

(12.3) I.f q and q' are distirtt:t elements of Q hauing the sante rank, then p, and pn, are
both antichains.

Corollary 12.1. The poset

conditions hold:
T,nP is Cl-shellable if and only if one of the following

(12.4) Q is a chain and P is Cl-shellable, or

(12.5) P is an antichain an<1 Q is Cl-shellable.

The proof of rheorem 12.1 follows from analogues of Lemrna s 4.1,4.2, 4.3, and
4.4 just irs Theoretn 4.1 followed from thosclemmas. The analogue of Lemrna4.l,
which states that 160 is Cl-strellable if ancl only if P and Q areCl-shellable was
discovered by Bjorner and Wachs [8, 8.6]. The analogue o[ Lemma 4.2 is a special
case of Lemma 4.2 itself since Cl-shellable posets are Cohen-Macaulay. Next we
prove the analogue of Lemma 4.3.

Lemma 12.1. I f Q is cL-shelloble and q e e, then elq is cL-slrcllable.

Proof'. Take a Cl-labelling of Q ancl acld a very largc number to the labels
corresponding to cclgcs in Qlq abovc rJ: Specifically, lct N be an intcger grcater tfuan
2,(rrr) lor all I and all maximal chzrins min elq.Let i(ur) : (A,r(n), . . . ,- troir(,n)), where

)",,(tri :[t,ln) iti <r(q)
t\ / 

[l,(nr) -r l/ il-i > r(rr)

Thcn it is easily verified that ),'is a Cl-labelling of elq. tr
Bcfore discussing the analoguc of Lcmm a 4.4,lve consider the analogues of the

other results, Corollaries 4.2,4.3, and 4.4 TIie analogue of Corollary 4.2, that every
interval in n Cl-shellable poset is Cl--shcllable, is immediate from the definition.

Theorem 12.1. The poset

conditions hold:
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Thc atlalogue of Corollary 4.3 that states that the rank-selected subposct P, of a CL-
shellable poset P is CL-strellable was proven by Bjomer and Wachs [8,8.1]. The
analogue of Corollary 4.4 tha.t states that CL-shcllable posets are rank-connected is

a spccizrl case o[ Corollary 4.4 itself.

It remains to prove the analogue o[ Lemrna 4.4 that if q € e, then e cr- q is CL-
shellable if and only iI p is too. This is Lemmzr 12.2 below. As we noted with EL-
shcllability, it is t.rot clear lrow to prove this from the clefinition of lcxicographic
labellings. What ertztbles trs to establish the result in this case, unlikc before, is a
por.vcrful tool for proving rcsults about CL-shellability due to Bjorner and Wachs.

Recall tl-rat the elcments of a graded poset which covcr 0 are calle cl utonts. A
graded poset 1' o[ rank d + 2 is said to admit a ret'ursiue utont orrlerinrl (RAO) if
r/:0 or if d > 0 ancl there is an ordering o1, e2, ..., ar o[ the atoms of P which
sa ti s[ics:

(12.3) For all.7 : 7,2, . . . , t.,lai, i1 admits a RAO in which the atoms of La,,i1 that
come first in the ordering urc those that cover some o, where i <.i.

(12.4) For all i <.i, if ar, o.i 1y then there exists k <.i and an element z such that
ak.0.i -+z<Y.

'Note that a RAO does ttot ordcr the clcmeltts of I'of every rzrnk. For exantple, thc
szttnc clcmcnts o[ rank 2 ntay bc orclcrcd cliftcrcntly in the atom orderings o[
different intervals [,!, i].

Although RAO is hardcr to define and to grasp than Cl-shellability, it is rnore
useful for induction prools. 1'he key rcsult is this.

Thcorem 12.2. 18,3.2) A gyatled poset P tttl.mits un RAO if' and onllt i/' P is CL-
sltellable.

We can now prove our Lemma.

Lcmma 12.2 I/ q€Q.tttt,tr {,r) is CL-slrcllultlc il'urtd otrllt ( A is CL-shcllcrble.

Proof.First suppo ,"{}ihas a RAo. If r7 is not an arom of p, tlien p has a RAo by
induction on thc rank of 0. So supposc 17 is an ertor"r'r of Q. Then take thc RAO for

Q rr q and clelete thc copy o[ q which comes later in thc zrtom orclering. It can be

clrecked that this leaves a RAO for Q.
Conversely, suppose @ has a RAO ancl 17 e Q.By induction on the rank of Q. it

can be shor,vn that f?) adrrits a RAO if q is not an atom ol Q.If qis an atom of Q,
simply insert the ncw copy of r7 immcdiately after thc original cgqy of rJ in tlie RAO

of Q.lt is straightforrvarcl to cl-rcck that tlris givcs a IIAO of f ,r) fl

Theorem l2.l now follows from thc results above just zrs Theorem 4.1 follorving
from Lemmas 4.1-4.4

Acknon'ledgcmcnt. We thank P. Irrankl lor his sr-rggcstions lor irnproving the exposition o[ this
papcr
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