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Abstract. We study the problem of determining when the lexicographic sum ), _, P, of a family of
posets { P,|]ge Q} over a poset Q is Cohen-Macaulay or shellable. Our main result, a characteriz-
ation of when the lexicographic sum is Cohen-Macaulay, is proven using combinatorial methods
introduced by Garsia. A similar characterization for when the lexicographic sum is CL(chainwise-
lexicographically)-shellable, is derived using the recursive atom ordering method due to Bjorner

.-and Wachs.

1. Introduction

The study of Cohen-Macaulay posets has produced a fruitful mingling of ideas from
combinatorics, commutative algebra, and topology. The references listed at the end
of this paper form only a fraction of the recent outpouring of results in this area.

In short, to a finite poset P can be associated a commutative ring R[ P],and P is
Cohen-Macaulay in the ring-theoretic sense if and only if R[P] is a Cohen-
Macaulay ring. A simplicial complex A(P) can also be associated to P, and P is said
to be Cohen-Macaulay in the topological sense if and only if the homology of 4(P)
satisfies certain conditions. The most important theorem in the area, due to Reisner
[16], states that the ring-theoretic and topological definitions of Cohen-Macaulay
posets are equivalent.

The interplay between the algebraic and topological interpretations figures
prominently in applications of Cohen-Macaulay posets (and, more generally, sim-
plicial complexes) such as, e.g., the solution of the upper bound conjecture concern-
ing the number of faces of a spherical simplicial complex [17], and in obtaining
information about the Mdbius function of P [6].

Working from the ring-theoretic definition, Garsia [10] has derived a purely
combinatorial and linear-algebraic characterization of Cohen-Macaulay posets.
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In practice, showing that a poset or a class of posets satisfying certain conditions
is Cohen-Macaulay from the definition or Garsia’s characterization is often difficult.
A topological property, shellability, has proven to be very useful. It is stronger than
the Cohen-Macaulay property, but many interesting Cohen-Macaulay posets are
shellable. It has an essentially combinatorial definition. Bjorner has introduced the
notion of lexicographic shellability, which involves slightly stronger properties than
shellability. Two properties of this type, EL-shellable and CL-shellable, are parti-
cularly natural, useful, and interesting combinatorially.

In dealing with posets having certain special properties one asks whether these
properties are preserved under standard constructions. In this paper we investigate
when the lexicographic sum ) _, P, of a collection of posets P, over a poset Q is
Cohen-Macaulay, shellable, EL-shellable, or CL-shellabe. For Cohen-Macaulay
and CL-shellable posets we can solve the problem completely, and for shellable and
EL-shellable posets we obtain partial results.

The lexicographic sum ), , P, is more general than constructions studied
previously in the area, so we shall cite connections to earlier results. In particular,
special cases of our main result for Cohen-Macaulay posets have been obtained
before by homological arguments and sometimes also by ring-theoretic arguments.
We use only Garsia’s combinatorial characterization of Cohen-Macaulay posets in
hopes of making this area accessible to a wider audience. Although we succeeded in
formulating and proving our main theorem on when the ordinal sum is Cohen-
Macaulay, it must be conceded that the homological definition yields a shorter and
less complicated proof.

The paper is organized as follows. After setting our poset terminology and
surveying the Cohen-Macaulay definitions, we state our results for Cohen-
Macaulay posets in Section 4. The proof is divided into several lemmas which are of
independent interest and are proven in the next few sections. In Section 10 we survey
the area of shellability and consider when the lexicographic sum of posets is
shellable. The last two sections look at constructions of lexicographically shellable
posets.

2. Poset Terminology

In a poset (partially ordered set) P, a chain (respectively, antichain) is a totally
ordered (respectively, totally unordered) subset of P. A chain C has length |C|. We
denote by % = %(P) (respectively, .# = .#(P)) the set of all chains (respectively,
maximal chains) of P.

All posets in this paper are assumed to be finite and pure, which means that all
maximal chains have the same length, called the rank, r = r(P). For xe P, r(x) =
rp(x) denotes the rank of x, which is the maximum length of the chains in P with
maximum element x. The rank set P; consists of the elements x with rank r(x) = i.
If ¢ is a chain, then r(c) = {r(x)|x ec} is the rank set of c. )

The poset P is graded if it is pure and contains a unique maximal element | and a
unique minimal element 0. We use P to denote P with a minimum element 0 and a
maximum element 1 added to it.

The ordinal sum P @ Q of disjoint posets P and Q has elements P U Q ordered
by x < yif and only if x and y are both in P or both in Q with x < y or xe P and

s st
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yeQ. lf #? = {P,|qeQ} is a family of posets indexed by the elements of a poset Q,
then the lexicographic sum of 2 over Q, denoted Y ., P,, is the poset obtained by
replacing each element g € Q by the poset P,. More precisely, Y ..o P, = {(4,p)lq€ O,
pe€ P,}, ordered by (q,p) < (¢',p’)ifand onlyifq < ¢inQorqg=q inQandp < p'in
P[P =PlorallqeQ,} ., P, is denoted by ), P and called the lexicographic
product of P over Q. Observe that P @ Q is the lexicographic sum of P and Q over
a two element chain.

An element x is covered by an element y of P, written x — y, if x < y and if x
<z<Zyonlyilz =y A closed interval [x, y] for x < y in P contains all elements z
such that x < z <y, ordered as in P. An open interval (x, y) contains all z such that x
< z < y. Therestriction of P to an element x, denoted P|x, contains all elements z of
P which are related to x, that is, z < x or x < z. The extension of P by an element x,
denoted P oc x, is P with a new element, call it x’, which is just like x:z < x’
(respectively, z > x') if and only if z < x (respectively, z > x). The subposet of P in
which x is deleted is denoted P\x. The dual poset P of P has the same elements as P
does, but with the ordering reversed.

We next describe the lexicographic order that we impose on the chains of a poset
Pofrank r = r(P). Foreachinteger n > 1, [n]istheset {1,...,n}. IfS, T < [r], write
S < T ifeither [S| < |T]or|S| =|T|and min(S4 T)eS. Label the clements of P by
theintegers 1,2,...,|P|, starting with the elements of P,, then the elements of P, etc,
The chains %(P) are ordered as follows: For ¢, ¢’ e %(P), write ¢ < ¢ if either r(c)
<r(c)orr(c) = r(c’) and, looking at the labels of the elements, min(cA4c’)ec.

A simplicial complex A is a family of subsets of a finite set, called faces, such that
for any face Fe 4 and any G = F, Ge 4. To a pure poset P we associate a simplicial
complex A(P), called the order complex, in this way: The vertices (0-dimensional
faces) are the elements of P and in general the i-dimensional faces are the chains in P
of length i + 1, including & as a (— 1)-dimensional face.

3. Cohen-Macaulay Posets

One may study a poset P topologically by looking at its order complex, A(P). This
was done by Baclawski [1], who introduced the idea of Cohen-Macaulay posets.
Without going into details here (cf. the survey [6]) it suffices to mention that one
looks at the reduced simplicial homology groups of A(P). Throughout the paper let
k denote any field. The poset P is Cohen-Macaulay over k if every open interval (x,)
in P is a bouquet, which means that its reduced simplicial homology Hi((x, y), k)
vanishes, except possibly at the top level, i = r(y) — r(x) — 2. Indeed this definition
of Cohen-Macaulay can be extended to any simplicial complex 4. More generally, k
can be replaced by any commutative ring, for example, the integers.

Reisner [16] and Stanley [ 17] associated a commutative ring R[ P] with a poset
P in the following way. To each element i in P associate an indeterminate x;. With k
being some field, let R[ P] = R/I, where R = k[x,, ..., x,] is the polynomial ring for
the indeterminates from the n elements of P, and where [ = ({x;x;|i,j unrelated in
P}) is the ideal generated by products from unrelated elements of P. Thus the
surviving monomials in R[ P] are of the form exi'xi2--- x;ik, where ce k,each a;e N,
and i; <i, <--- <, is a chain P. Note that different posets P may have the same
ring R[ P].

LA A G TR e T
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The algebraic definition of Cohen-Macaulay posets says simply that P is Cohen-
Macaulay over k if its ring R[ P] is Cohen-Macaulay. We mention one method for
deciding if R[ P]is Cohen-Macaulay. See, for example, [4] for more details. Let 6, be
the rank j polynomial in R[ P] given by

=y X

(-

i

and only if there exists some set
= R[ P] there exist unique polynomials

Then P is Cohen-Macaulay over k
{B1, ..., Bo} = R[P] such that for every
Pi»-..» ps With coefficients in k such that

f= N B.p{0

where r'= r(F).
The algebraic definition of Cohen-Macaulay can be extended to any simplicial
which the surviving monomials come from
faces of 4. Reisner’s Theorem [ 16] asse i fi : P_or more generally, for
any simplicial complex 4, the topological and algebraic def ons of Cohen-
Macaulay are equivalent. It is worth noting that the definits hen-Macaulay
can be applied to finite posets in general. whether or not the; ut it can be

shown, see [6], that every Cohen-Macaulay poset is pure, which is why we only
consider pure posets.
We will not work directly with either the topological or algebraic definitions.

in Garsia [10]. Form a matrix N in which the rows correspond to the chains
¢;€%(P) and the columns to the maximum chains m; € ./#(P). (Be sure to order the
rows and columns of N as described in section 2.) The entry Nj;is  if ¢; = m;and 0
otherwise. The matrix N has rank |.#/( P)| since its last p%(P)! rows form an identity
matrix. Now form the set 2 of chains which correspond to rows of N that form the
basis in which every row is linearly independent (over k) of the rows above it. Garsia
has shown that P is Cohen-Macaulay over k if and only if this lexicographically least
basis £ satisfies the combinatorial condition:
|{beB|r(b) = S}| = |{ce®|r(c) = S}

for every S < [r].

Although this and other related characterizations are inspired by visualizing the
matrix N, it is more natural overall to work directly in the ring R[P]. We need some
notation for this.

Fix ¢ = {p, P2, ---» Pu} S P. Let x(c) be the element x, -~ X, of R[P]. Note
that x(c) = 0if cis not a chain. Forany S < [r]. let Hs = H? be the vector subspace
of R[ P] with basis {x(c)lce%,r(c) = S}. Let Lc = L"c be the element of Hy, given
by

Le=3(e) 1] 0.

ie(r]
igr(c)

which is 0 unless ¢ is a chain. It follows from the definition of R[P] and 6; that
Le = ¥ x(m).
meM

In particular, for me .4, Lm = x(m).
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Let LH, be the vector subspace of Hy, generated by {Lc|ce®,r(c) = S}. Since
cach 0, is a nonzero divisor, multiplication by [ icpns 0 gives an isomorphism
from Hg to LHj for all S < [r]. Consequently, dim, LHs = |{ce@|r(c) = S}|. Let
Y res LHy denote the vector subspace of Hj,, generated by the LH, with TES,
that is, by {Lc|ce®,r(c) & S}. Similarly define Y r<s LHy to be the subspace

generated by the LH, with T< S in the lexicographic ordering on [r].
The conditions of the following lemma are very similar. We shall require each con-
dition later on. It is to our advantage to see that they are equivalent once and for all.

Lemma 3.1. Let 2 be a collection of chains from the poset P. The following conditions
are equivalent:

(3.1) For all chains c €@, Lc can be written uniquely in the form

Y., a,Lb.

be%
r(b)<r(c)

(3.2) a) For all chains ce@, Lc can be written in the form

Y. o,Lb.

be#
r(b)=r(c)

'b) {Lblbe R} is a basis for Hy,y.

(33) a |{ce@lr(c) =S} = |{be B|r(b) < S}| for all S < [r].
b) {Lb|be A} is a basis for Hy,.
)

(3.4) a) |{ceB|r(c)=S}I= [{be B|r(b) = S}| for all S < [r].
b) For allme .4, Lm can be written in the form Y ¢, %,Lb.

The proof of the lemma is a simple exercise. From the lemma and Garsia [10,
Section 3] we obtain the following characterizations of Cohen-Macaulay posets.

Theorem 3.1. The following conditions are equivalent for a poset P:
(3.5) P is a Cohen-Macaulay over k.
(3.6) Thereis a collection of chains of P which satisfies the conditions of Lemma 3.1.

(3.7) If B isthe lexicographically least set of chains of B with {Lb|be 2} abasis Sfor
H,,, then % satisfies the conditions of Lemma 3.1

(3.8) For every subset S of [r]
LH,NY LHy< Y LH;.

T<S TGS
From this theorem it is straightforward to verify the following well-known
elementary observations about Cohen-Macaulay posets:

(3.9) A chain is Cohen-Macaulay.

(3.10) An antichain is Cohen-Macaulay.

(3.11) The poset {1 <3,2 < 4} is not Cohen-Macaulay.
(

3.12) If the element peP is comparable to every other element of P, then P is
Cohen-Macaulay if and only if P\p is Cohen-Macaulay.

(3.13) The dual poset P?is Cohen-Macaulay if and only if P is Cohen-Macaulay.
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4. The Lexicographic Sum of Cohen-Macaulay Posets

We prove the following result about Cohen-Macaulay poscts.

Theorem 4.1. The poset Y ..o P, is Cohen-Macaulay over k if and only if all of the
Jollowing conditions hold:

(4.1)  Each poset P, is Cohen-Macaulay over k,

(4.2) The poset Q is Cohen-Macaulay over k,

(4.3) If qand g are distinct elements of Q having the same rank, then P, and P, are
both antichains.

An immediate consequence of this result is

Corollary 4.1. The poset Y, P is Cohen-Macaulay over k if and only if one of the
following conditions hold:

(4.4) Qs a chain and P is Cohen-Macaulay over k, or
(4.5) P is an antichain and Q is Cohen-Macaulay over k.

Theorem 4.1 will be derived in Section 9 from a sequence of intermediate results,
Lemmas 4.1-4.4 below, which are of interest in themselves.

Lemma 4.1. The sum P, @ P, is Cohen-Macaulay over k if and only if P and P, are
both Cohen-Macaulay over k.

Lemmad.2.1f Y, o P, is Cohen-Macaulay over k, and if q and ¢’ are distinct elements
having the same rank, rhen P, and P, are both antichains.

Lemma 4.3. If g belongs to the Cohen-Macaulay poset Q, then the restriction Qlq is
also Cohen-Macaulay.

Lemma 4.4. If g € Q then the extension Q oc g is Cohen-Macaulay over k if and only if
Q is Cohen-Macaulay over k.

A nice topological proofof Lemma 4.1 can be found in [19, 9.17. Baclawski [2,
7.3] discovered Lemma 4.4 using the Leray spectral sequence. Indeed, after learning
of our Theorem 4.1, Walker produced a purely topological proof.

Some further well known properties of Cohen-Macaulay posets [6] can now be
supplied with clementary proofs, given Theorem 3.1, once we establish the results
above:

Corollary 4.2. A closed interval [x,y] in a Cohen-Macaulay poset is also Cohen-
Macaulay.

Proof. Let [x, y] be aninterval in the Cohen-Macaulay poset Q. Letg, —» ¢, — =
g, — x and y = ¢,,, = - — q,, be unrefinable chains in Q, where ¢, is a mmlmal
element and ¢,, is a maximal element of Q. By Lemma 4.3 and observation 3.12,
Olg.1q,) .- 1qulx . \g,, = [x, ] is also Cohen-Macaulay. ]
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For a poset P and T'< [r], the rank-selected subposet Py is the subposet of P
consisting of pe P with r(p)e T.

Corollary 4.3. If P is Cohen-Macaulay over k and T < [r], then P, is Cohen-
Macaulay.

Proof. By Theorem 3.1 there exists a set # of chians of P satisfying (3.3). Let
# = {beB|r(b) € T}. Forevery S < T,
|{ceG(P)lr(c) =S} = |{beB|r(b) < S}l
=|{be#'|r(b) < S}|.

Moreover, {L"h|b e %'} are linearly independent since L' = ([ |icppr 0:) L b and
[Ticppr 0: is a nonzero divisor. Since |{L""b|be #'}| = |6(Pr)l, {L""h|be '} is the
required basis, and it now follows from (3.3) and Theorem 3.1 that P, is Cohen-
Macaulay. O

Say P is rank-connected if cach subposet of P consisting of two consecutive ranks
has a connected Hasse diagram. Note that if T < [r] with |T| > 2 and P is rank-
connected, then Py has a connected Hasse diagram. An antichain is vacuously rank-
connected.

‘Corollary 4.4. Every Cohen-Macaulay poset is rank-connected.

Proof. We prove the contrapositive. Suppose there is a subset T < [r] of two
consecutive ranks with P, disconnected. Then Pj can be written as a lexico-
graphic sum of posets of rank 2 over a two point antichain, so it follows from
Lemma 4.2 that P, is not Cohen-Macaulay. Hence, by Corollary 4.3, P is not
Cohen-Macaulay. |

In the following sections we prove the four lemmas above and then Theorem 4.1.

5. Proof of Lemma 4.1

We prove that thesum Py, @ P, is Cohen-Macaulay over kifand only if Py and P,
are both Cohen-Macaulay.

Let P=P, ®P,, r;=r(P), r=r(P), ¢ = C(P,), € =C(P), M= A(P;), and
M = A (P).

First assume that P, and P, are both Cohen-Macaulay. Find collections of
chains 4, < %, which satisfy the conditions of Lemma 3.1. Let 4 be the set of chains
{byUb,|b,eB,,b,e%,} of P. A typical subset of [r] is

S:{Otl <<O(m<l‘1 +/}1 <<I’1 +/gn}

with §; = {o;,...,0,} a subset of [r;] and S, = {Bys ..., B} a subset of [r;]. The
number of chains ¢ € ¥ with rank set S is

[{c,€blr(c;) = Sl}|~|{cze(62|r(c2) = S}l
Similarly the number of chains b e # with rank set contained in S is
|{b, e B |r(by) = Si}l- |{b, € B,1r(by) € S, .

Hence 4 satisfies condition (3.4a) of Lemma 3.1.

5
b
'y
I
B
4
b
5
8

X A T R
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Let ¢ = ¢; Uc, be a typical chain of P with ¢;e%,. Each maximal chain of P
containing c¢ has the form m, Um, where m; is a maximal chain of P, containing c;.
The ring R[ P ] is contained in R[P]; hence L”'m; L">m, = L"(m,; Um,) and

L"c,Uey)= Y LPm,-L"m, = L™c¢, L"¢,.
cpSmy

c,Sm,
m;e.;

If m is the maximal chain m,; Um, of P, then by hypothesis

I), 1)'
Lfim; = Y o, L"b,.

bi € ’%i

Thus
L'm = L"'m - LPm, = b} oy, o, LY(by Ub,).

bUb,e#
bye#By,byeA,

Therefore 4 satisfies (4) of Lemma 3.1 and P is Cohen-Macaulay.
To prove the converse, suppose that P = P, @ P, is Cohen-Macaulay. Let
S < [r] and let
{eL"HgN Y L"MH,.
T<S
v - Tg[rl]
Multiply by 0 = ﬂf:,‘H 0; and allow the sum to be taken over all subsets of [r]
which are lexicographically less than S to get
(0eL"HsN Y L'Hy.

T<S$S
T<]r]

Since P is Cohen-Macaulay we have by Theorem 3.1
(0= ) L’H, =0 ) LPH,.
1SS TSs

The element 0 of R[ P] is a non-zero divisor; hence { e ZT%S L""H,, and P, is Cohen-
Macauley by Thcorem 3.1.

By (3.13) P is Cohen-Macaulay since P is. Since P¢ = P{ @ P{, by the same
argument as above, P is Cohen-Macaulay. Applying (3.13) again, P, is Cohen-
Macaulay. ]

6. Proof of Lemma 4.2

Now we prove the (new) result that if the lexicographic sum Y .., P, is Cohen-
Macaulay and if ¢ # q"€ Q and r(q) = r(¢’), then both P, and P, are antichains.

For notational convenience, let . be the sum quQPq. Recall that a typical
element of ¥ is (¢, x) with ge Q and x e P,. The maximal chains of % are of the form
M:(q1,mq,), (2:my,)s -, (@ m, ) Wwhere m = {q,, ..., q,} is a maximal chain of Q
and for each i, m,_is a maximal chain of P,.. If M is the maximal chain of %" described
above and q is an element of Q, then we say g € M if q is equal to one of the g;. Select
any g in Q and any n, | <n < r(P,). Observe that

Y Lg9= ¥ LM

xePq Me . /#(Y)
r(x)=n qe M

— N — ~J

o

C(

th



The Lexicographic Sum of Cohen-Macaulay and Shellable Ordered Sets 153

because every maximal chain of .& containing q passes through exactly one of the
points (g, x) as x varies over all the elements of P, with a fixed rank.

We establish the Lemma by induction. Let n > 1. Suppose that if ge Q and
r(q) < n, then either P, is an antichain or q is the only element of Q of its rank. Let
dy ---, g, be the distinct elements of Q having rank n. Assume that k > 2 and that
r(P,) > 2. By the induction hypothesis r,(q,,x,) = ry(q,,x,) if x; is a rank one
element of P, . It follows from the preceding display that

k

=3 e

which is an element of

L"Hn' Y L1,
T<S
where .7 is the singleton consisting of the rank of (¢, x), and where the element x of
P, has rank 2. This element is not in 2175 L"H,, which is the k-vector space
spanned by L” 5. By (3.8) of Theorem 3.1, % is not Cohen-Macaulay. Thus, either
k=Tlorr(P)=1forl<i<Hk ]

7. Proof of Lemma 4.3

Next we show that if 0 is Cohen-Macauley and g e Q, then the restriction Q|q is also
Cohen-Macaulay. This new result can be proven algebraically by localizing the ring
R[ P] at the element X4, and it can be proven topologically, but we will present here
an elementary combinatorial proof.

Label Q so that ¢ is the lexicographically largest element of its rank. Let Z be the
lexicographically least collection of chains of Q with {Lblbe %} a basis for Hy,y. In
this proof L means L2 and r = r(Q). Observe that if ¢ is a chain of Q containing g,
then Lc is equal to the following linear combination involving lexicographically
smaller chains:

Le=L{c\q)— Y L((c\q) U y).
28
r(n=r(q)

Consequently, if be %, then q is not an element of b.

Thering R[Q|q] is a subring of R[Q]. If cis a chain, then the maximal chains of
Olq which contain ¢ are precisely the maximal chains of Q which contain ¢ and g;
consequently,

L%¢ = L(cU q)-

Of course, both sides are 0 if ¢ U q is not a chain.
Let be the lexicographically least collection of chains of Q|q such that
{L(bUq)lbe R is a basis for HE By Theorem 3.1 and (3.2) it will suffice to show
hat for each chain ¢ in Q there are o € k so that
LicUq)= Y aL(hUg). (7.1)

bes
r(b)<r(c)
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Suppose that every chain of Q which is lexicographically smaller than ¢ can be
written in form (7.1). Observe that if g e ¢, then c\q is lexicographically less than c;
hence,

L{cUgq) = L((c\q)Uq) = Y o L(b U q).

_be#
r(b)Sr(c\q)

Since r(c\q) is contained in r(c), this expression has the form of (7.1). Henceforth, let
S = r(c). We may assume that r(q)¢S and that c¢ 2. Thus

L(cUq)= Y pzL(bUq).

be #
b<c
If b < ¢, then either r(l;) < S, or r(ﬁ) = Sand b < c. Let
C=L(cUq)— ) BsL(bUg)= Y BsL(bUq). (7.2)
be % he 4
b<c r(h)<S

r(h)=S
Since Q is Cohen-Macaulay, Le¢' can be written uniquely in the form

Y oLb

be#
r(bycr(c’)

“for all chains ¢ of Q. If we write (7.2) in terms of Lb for be % we have

(= 2 wlb= 3 ¥ yulb (7.3)

be# be % be#
r(hy=SUr(q) r(b)<S r(b)ysrb)Uq)
Observe that ifr(b) = S, then the right hand cxpression for {in (7.3) does notinvolve
Lb, because r(q)¢ S < r(bU q) implies S < r(b) which implies § < r(b) < S, which is
impossible. Since {Lblbe #} is a basis for H,,;, this implies that in the left hand
expression for {in (7.3), y, = 0 for all b with r(h) = S. Hence,

C — Z 'thb
be#
rh)y< S U r(q)
(74) ’r(h)-‘f‘n55 .
be# be#
r(hES r(@)er(h)ycSUr(q)

Let o: R[Q] — R[Q]q] be the ring map which sends all elements of Q not compar-
able to g to zero and all elements comparable to q to themselves. If b is a chain of Q,
then o(Lb) = L(bUgq). Since {eR[Q|q] we have o(() = (. Apply o to the last
expression in (7.4) for { to get

(= ) nL(hUq)+ x v L(b U q).

be# be#
r(h)ES . r(q)er(bycSUr(q)
We have seen that if b is in 4, then q is not an element of b. Thus if r(q)er(b), then
bUg is not a chain and L(hU q) = 0. Hence
Z.-‘ = Z yI)L(b U q)a

be#
GOEN

and from (7.2)

NS ==
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Q
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L(cUq) = 7,;2 o5 L(bU q) + 2 mL(bUq) (7.5)
b ;r' r(}hT(‘; S

r(h)=s
All of the b and b on the right side of (7.5) are lexicographically smaller than c. By

induction each term L(bU g) on the right hand side can be put in form (7.1). Thus
L(cUg) can be put in form (7.1) and Q|q is Cohen-Macaulay.

8. Proof of Lemma 4.4

For the last of this series of lemmas, we are to show that if g € Q, then the extension
Q oc q is Cohen-Macaulay over k if and only if Q itself is Cohen-Macaulay. B

Assume that Q is Cohen-Macaulay. Let Q = Q|q, 0 = Qocq, L=L°% L=10,
L=1%andr= r(Q) = r(Q) = r(Q). Let § denote the extra copy of g in (. Let &
be a collection of chains of Q satisfying the conditions of Lemma 3.1. By Lemma 4.3,
Q is also Cohen-Macaulay. Let ,7/27?6 the lexicographically least collection of chains
of Q with {175]56??} a basis for HZ. If ¢ is a chain of Q and ge@, then ¢\ q is lexico-
graphically less thz~m cand L(c\q) = Le. It follows that if b is in 4, then q is not an
clement of b. Let 2 be the set of chains

AU{bUGlbe#).
We will show that # satisfies (3.4) of Lemma 3.1.

Let € = %(Q), 7 = %(Q), and 4 = %(Q); similarly, let .7 = Q). A = 4(Q),

and ./ = A(Q). 11 S is a subset of [#], then
{ee?|r(e) = S} = |{ce?|r@) = S,q¢ci + {ce|r(e) = S,ged)|
=|{ce?|r(c) = S}| + X(r(q)eS)}{Ee‘glr(E) =S}
where

‘ Lifr(q)es,
X(I (q)eS) a {O otherwise.
Similarly
[{be B|r(h)es)| = [{beBlr(b) < S,q¢b)| + [{beJ|r(b) S,Geb}|
=[{beBIr(b) = S} + |{bUG|be Z and r(bUg) = S}
[{beBIr(b) = S}| + x(r(q)eS)I{be B |r(b) < S)|.

Since % and % both satisfy (3.4a) of Lemma 3.1, we conclude that Balso satisfies this
condition.
In order to show that % satisfies (3.4b) we must carefully distinguish L, L,and [,
Let [ be the rank of ¢. Let ¢, ¢, ¢ be chains of Q, 0, respectively. Then
Le=x(c) [] 0, Le= x(€) J] 0.Le= x@ T[] 6

! i i
ie[ri\r(c) ie[rI\r() ie[r]\r(c)

where

x,, and 0, = Z_ 2
yeqQ
(=i

0= ) x,

ye@Q
r(y)=i

=
I
321
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It is clear that

0, = 0, if i # 1,
0;= 0.+ x(q) ifi=1,
x(q)0; = x(4)0:; ili#L

If i1 is a maximal chain of Q, then there are two cases: either § e or § ¢ .

Case 1. Suppose g i Since #i\ g is a chain of Q, we have

0,x(\g) = L(m\g) = 5 ozLb = Zﬁaﬁx(ls) T 0,.

be A be B ie[r\r(b)
Since b e Z implics that g ¢ b, which implies l¢r(ﬁ), we have that
0x(miNG) = 0, Y. azx(b) [ 0.
be % ie[rI\r(bUq)
Cancel the non-zero divisor 0, and multiply by x(§) to see that
L(ﬁl) = x(rﬁ) = x((])x(ﬁz\(i) = Z oc;x(BU (]) H 0,

be# ie[r]\r(bU §)

Since x(§)0; = x(4)0; for i # I, the last expression is equal to
> oox(bUg) 1 0= > ozL(hU Q).

be A ie[r\r(bUq) be A

This is a linear combination of the Lb, be 4.

Case 2. Suppose that § ¢ m. Then
Lin=Lit=Y o,Lb= Y ax(b) [] 0
be# be % relrl\r(b)

Since 0, = 6, for i # land 0, = 0, + x(G), we have
ILfi =y &Lb— Z])’,,,Em

be# me.
gem

for some 3, € k. By Case 1 each Lm is a linear combination of the f,(l; U §G), and thus,
of the Lb.
Hence, for all maximal chains s of 0,
Eﬁ’l = O(,;El;.
be#
Thus Q is Cohen-Macaulay. ,

We now prove the converse. Assume Q oc g is Cohen-Macaulay. Let the elements
of Q with the samerank asgbe g = q,,...,q,,. If the characteristic of the field k is not
2, let n=2 and 0 =Qocq,oc---ocq,. If char k=2, let n=3 and Q=
QocqqocoC g, o€ q oc oCq,. By repeated applications of the direction of
the Lemma which has been established we have Q oc qis Cohen-Macaulay implies 0
is Cohen-Macaulay.

As always let 4 be the chains of Q, % the chains of 0, L= L2 [ = L% and r =
r(Q) = r(Q). Let f: 0 — Q be the poset map which is the identity on Q and which
send each duplication of ¢; to g;. Extend f the natural way to obtain maps f: 4 — %

and f: R[Q] - R[Q].
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Claim 1. If'Y 0. Lc = 0, then Deed UL = 0.

Proof. The sum Y cew % Le = 0 means that if mis a maximal chain ofQandcy,...,cy
are the subchains of m, then b3 o, = 0. If 1 is a maximal chain ofQandé,,..., ¢,
are the subchains of i, then /() is a maximal chain of Qand f(¢,),..., f(¢y) are the

subchains of /(). Hence Diti 0, =0, and Yee7 Uy LE = 0.

Claim2. If { =Y _ o Le,and ¥ = > ee7 % L, then S = nt where n =2 or 3 or
defined earlier.

Proof. Let I be the rank of the elements d1>---5 qy- I ler(c), then there are n chains
¢e? with f(¢) = ¢, but for each of these f(Lé) = Le. If I¢r(c), then there is only one

~,

chain ¢e % with JE) = ¢, but f(Lé) = nLe. It follows that S&) = nt.

We use (3.4) of Theorem 3.1 to show that Q 1s Cohen-Macaulay. Let S be a subset
of [rlandlet{ =Y,  _colLc = Y rer<s % Lc be anelement of LHgNY ;s LH,. Let
{be Y )5 e, LE. 1t follows from Claim 1 that {is also equal to D wey<s % Le, thus
Cisin CHEN > r<s LHE. Since 0 is Cohen-Macaulay, {isin Y res LHZ by Theorem
3.1. Thus for some g, £ = Y ross BLe. Now consider 6 = Yreyes Bef(LE). By

analysis in the proof of Claim 2 it follows that 1) = Zr(c)%SﬂCLc, where
| Y. Builler(c)
Bo=4 ri—
nf, where ¢ = f71(c), if L¢r(c).

Thus ./.(C)EZT%SLFIT' By Claim 2, f({) = n{, and, by design, n is a unit; therefore ¢
itself belongs to ZT%SLHT, and Q is Cohen-Macaulay. ]

9. Proof of Theorem 4.1

We now combine the lemmas above to prove our main theorem characterizing
when the lexicographic sum quQ P,is Cohen-Macaulay over k.

The poset Q is the sum 0, @0, ® - ® Qy where, for all I, Q; 1s the union of
consecutive ranks of Q, and Q; is cither a singleton or clse cach rank of Q; has more
than onc clement. Thus Laepl= DR, 3 a0, By

I3 yep P, is Cohen-Macaulay, then by Lemma 4.1 each Yaco, P, is Cohen-
Macaulay. If Q; is the singleton {q;}, then - o, Pyis P and P, is Cohen-Macaulay. If
each rank of Q; has more than onc element, then by Lemma 4.2, P,is an antichain for
each ge Q.. Thus (4.1) and (4.3) of the Theorem hold, By repeated application of
Lemma 4.4 any Q, which is not a singleton is Cohen-Macaulay, thus by Lemma 4.1,
0=0,® @ Oy is Cohen-Macaulay, which is (4.2).

Conversely, if Conditions (4.1) through (4.3) hold, then each Q; is Cohen-
Macaulay by Lemma 4.1, hence by Lemma 4.4 each quQ; P, is Cohen-Macaulay.
Thus quQ P, is Cohen-Macaulay by Lemma 4.1, O

Note that Lemma 4.3 is not used directly in the proof above. However, it is used
to prove Lemma 4.4, which is needed to prove the theorem. It is also crucial in the
proof we gave to Corollary 4.2.
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10. Shellable Posets

We now turn our attention to the notion of shellability, which originated in the
study of polyhedra. A finite simplicial complex A is pure d-dimensional if its maximal
faces, called facets, cach contain d + 1 vertices. Such a simplicial complex is shel-
lable il its facets can be ordered F,, F,, ..., F, in such a way that for all i < j there
exists k < jsuch that ;N F; < F,N Fyand | F, N F;| = d. Such an ordering of the facets
of A4 is called a shelling.

McMullen [15] used shellability to prove Motzkin’s upper bound conjecture for
convex polytopes 4. The conjecture gives the maximum possible number f;(n, d) of
i-dimensional faces of any d-dimensional convex polytope with n vertices. Klee
extended the upper bound conjecture to arbitrary manifolds. The case in which the
geometric realization |A4] of 4 is a sphere was proven by Stanley [17]. Shellability
could not be used because there exist triangulations of spheres which are not
shellable. Instead, Stanley used the Cohen-Macaulay property, which holds for 4 if
|A4| 1s a sphere.

For further information on shellability see [5, 7]. Bjorner [5, p.183] notes that
shellable complexes are Cohen-Macaulay but the converse is not true in general.
Indeed, although Cohen- Macaulayness is preserved under homeomorphisms,
shellability is not, e.g., consider the nonshellable sphere mentioned above.

Shellability carries down to order theory directly by saying a poset P is shellable
ifits order complex A(P)is shellable. Most interesting examples of Cohen-Macaulay
posets are actually shellable, e.g., finite distributive, semimodular, and supersolvable
lattices. So the interest in shellability for order theorists is that one can show
combinatorially that a poset is Cohen-Macaulay (and therefore has nice algebraic
and combinatorial interpretations) by giving a shelling order of its maximal chains.

Generalizing a technique of Stanley for labelling the edges of the Hasse diagram
of certain nice lattices, Bjorner [ 5] introduced a condition on such a labelling for any
finite pure poset P, now called EL-shellability, which implies shellability. A slightly
more general version of this concept, CL-shellability, was formulated by Bjorner
and Wachs in [7] and further studied in [8]. Thus EL-shellability implies CL-
shellability, which in turn implies shellability. It has been shown that shellability
need not imply CL-shellability, by Vince and Wachs [18] and by Walker [20].
However, it remains an open problem to find a CL-shellable poset which is not
EL-shellable. In practice the notion of CL-shellability has proven to be particularly
valuable because contructing a CL-shellability labelling of the maximal chains of a
poset is typically the easiest way to show that a poset is Cohen-Macaulay. Refer to
the survey [6] for more about these properties. In subsequent SGCUOHS we define EL-
and CL-shellability and consider their ordinal sums.

Now we consider constructions of shellable posets. Using the shelling order,
Bjorner [5, 4.4] proved the analogue of our Lemma 4.1:

Theorem 10.1. The poset P @ Q is shellable if and only if P and Q are shellable.

Since shellable posets are Cohen-Macaulay [5], the analogue of Lemma 4.2 for
shellable posets isimmediate from Lemma 4.2. The analogue of Lemma 4.3 is easy to
verify:

Theorem 10.2. If Q is shellable and if qe Q, then Q|q is shellable.



The Lexicographic Sum of Cohen-Macaulay and Shellable Ordered Sets 159

If Q is shellable and g€ Q, one can also construct a shelling of the extension
Q oc g, as follows: In a given shelling of the maximum chains of Q, each time a chain
appears which contains ¢, call it ¢, insert immediately after it the chain ¢ =
cU{q'}\{q}, where ¢ is the new copy ol ¢. This proves onc direction of the
analogue of Lemma 4.4:

Theorem 10.3. If Q is shellable and if qeQ, then Q oc q is shellable.

The converse of this theorem, which is the analogue of the other direction of
Lemma 4.4, seems equally natural, but we have not succeeded in proving it:

Conjecture. If ge Q and if Q o q is shellable, then Q is shellable.

This conjecture is the last piece of the puzzle necded to prove the analogue of our
main ordinal sum theorem. Thus it is equivalent to this

Conjecture. Theorem 4.1 remains true when “Cohen-Macaulay” is replaced by
“shellable™.

The shellable analogue of Corollary 4.1 for ZQ P would follow from this conjec-
ture. The analogue of Corollary 4.2, which says thataninterval in a shellable poset is
shellable, was noted in [5,4.27 and follows from the analogue of Lemma 4.3, Bjorner
proved the analogue of Corollary 4.3 in [5, 4.17, that rank-selected subposcts Py of a
shellable poset P are shellable. That every shellable poset is rank-connected, the
analogue of Corollary 4.4, is well-known and immediate from the definition of
shellable.

11. EL-Shellable Posets

We now present the definition of EL-shellable posets, as introduced in [5], and
study some of their properties. “EL” stands for “edgewise-lexicographically”. As-
sume P is graded (not merely pure). We label each edge x — y in the Hasse diagram
of P by an integer A(x = y). An edge-labelling A induces a labelling of cach unrefinable
chainc = (x, - x; >+ - x,)in P by Ale) = (Alxo = x1), .y Ay — x;))- We may
then order the maximal chains in an interval [x, y] of P lexicographically according
to the corresponding labels: We write ¢ < 1. ¢"if A(c) lexicographically precedes Ac).
A chain ¢ = (x> x; > > x,) 18 increasing if AMxg — b 7y Axy - Xg) Lo &
AMxy_y — x;). P is said to be EL-shellable if it admits a labelling 1 of its edges such
that for every interval [x, y] in P,

(11.1) Thereis a unique increasing maximal chain ¢ in [x,y], and
(1 1.2) ¢ < ¢ for all other maximal chains ¢’ in [x, y].

Such a labelling 1 is called an EL-labelling. All distributive, semimodular and
supersolvable lattices are EL-shellable Posets.

Less is known about how constructions are preserved for EL-shellability than
for the other properties. As noted by Bjorner [5,4.4] it is easy to prove the analogue
of one direction of our Lemma 4.1. Recall that P is P with 0 and 1 added.

Theorem 11.1. If P, ) are EL-shellable, then P ® Q is EL-shellable.
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The analogue of the other direction of Lemma 4.1, the converse of the theorem
above, remains open. The analogue of Lemma 4.2 follows directly from 4.2 itself. The
analogue of Lemma 4.3 is again easy to verify:

Theorem 11.2. 1 g is an element of the EL-shellable poset Q, then Q|q is EL-shellable.

Both directions of the analogue of Lemma 4.4, concerning whether the extension
Q oc qis EL-shellable, are open. One needs to prove both directions of this analogue
as well as the missing direction of the analogue of Lemma 4.1 to prove the analogue
of the main result for ordinal sums, Theorem 4.1. For now, we will merely make this
weaker conjecture, which generalizes Theorem 11.1 above:

Conjecture. If cach poset 13(1, g€ Q, is EL-shellable, if 0 is EL-shellable, and if P, and

P, are both antichains whenever ¢, ¢'e Q have the same rank then YacoP, is
EL-shellable.

The analogue of Corollary 4.2, which follows from Theorem 11.2 above, has
previously been verified by Bjorner [5, 4.2]: An interval in an EL-shellable poset is
EL-shellable. However, the analogue of Corollary 4.3 remains open: Is the rank-
selected subposet P of an EL-shellable poset P necessarily EL-shellable? This is
frustrating inasmuch as Corollary 4.3 guarantees that P, is at least Cohen-
Macaulay. Finally, we note that EL-shellable posets are rank-connected by Corol-
lary 4.4.

12. CL-Shellable Posets

Bjorner and Wachs [7] introduced a slightly more general definition of lexico-
graphic shellability than EL-shellability, called CL-shellability, “CL” for
“chainwise-lexicographic”. As we noted earlier, this notion is known to be strictly
stronger than shellability itself. By design it is weaker than EL-shellability, and
probably strictly weaker. Although there are some classes of posets that have been
shown to be CL-shellable for which no EL-labelling has been found, e.g., Bruhat
order, no one has yet proven that there exist any CL-shellable posets which are not
EL-shellable [6].

The idea of CL-shellability is to label the chains themselves, rather than the
edges, and to put a condition on the labelling which is sufficiently strong to preserve
the argument that the lexicographic order on the maximal chains of P is a shelling,
so that P is shellable (and, hence, Cohen-Macaulay).

Let P be a graded poset of rank d + 2. We consider labellings A of the maximal
chains m= (0 = xg > x; > > x,,, = 1) of P where cach such chain receives a
label A(m) = (A,(m), A,(m), ..., A44;(m)), each Z,(m) an integer, such that whenever
two maximal chains m and m’ coincide in their first k edges, then Ai(m) = A;(m'), for
1 <i <k If[x,y]isan interval and c is an unrefinable chain from 0 to x, then the
pair (c, [x, y]) is called a rooted interval. If b is a maximal chain in [x,y], it makes
sense to define the rooted label A9b) = (Ao+1(m), ..., Ay(m)), where m is any
maximal chain in P containing ¢ and b, sincé this label does not depend on m. We
now lexicographically order the maximal chains b in the rooted interval (c,[x,y]) by
b < b is Ab) lexicographically precedes A(b’). The chain b is increasing if
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A1 (M) < -+ < A, (m). Then we can define P to be CL-shellable if for every rooted
interval (c, [x, y]),

(12.1) there is a unique increasing maximal chain b in (c,[x,y]), and

(12.2) b < . b for all other maximal chains b’ in (¢, [x, y]).
Such a labelling 1 is called a CL-labelling.

An EL-labelling of the edges of a poset induces a CL-labelling of the maximal
chains automatically, but not conversely: A given edge x — y receives different
labels, depending on the root taken from 0 to x, so no edge-labelling is induced by a
CL-labelling.

For CL-shellable posets all analogues of the results above for Cohen-Macaulay
posets work. In particular, we shall show this:

/\
Theorem 12.1. The poset Yacq Py is CL-shellable if and only if all of the following
conditions hold:

(12.1) Each poset 1/’; is CL-shellable,
(12.2) The poset Q is CL-shellable, and

(12.3) If q and q' are distinct elements of Q having the same rank, then P, and P, are
both antichains.

=
Corollary 12.1. The poset Y0 P is CL-shellable if and only if one of the following
conditions hold:

(12.4) Q is a chain and P is CL-shellable, or
(12.5) P is an antichain and O is CL-shellable.

The proof of Theorem 12.1 follows from analogues of Lemmas 4.1, 4.2, 4.3, and
4.4 just as Theorem 4.1 followed from those lemmas. The analogue of Lemma 4.1,
which states that 1’/@\Q is CL-shellable if and only if P and Q are CL-shellable was
discovered by Bjorner and Wachs [8, 8.6]. The analogue of Lemma 4.2 is a special
case of Lemma 4.2 itself since CL-shellable posets are Cohen-Macaulay. Next we
prove the analogue of Lemma 4.3.

Lemma 12.1. If Q is CL-shellable and q € Q, then Q|q is CL-shellable.

Proof. Take a CL-labelling of Q and add a very large number to the labels
corresponding to edges in Q|q above ¢: Specifically, let N be an integer greater than
Ai(m) for all i and all maximal chains min Q|q. Let A(m) = (X1 (m), ..., Ajy1(m)), where

Ai(m) = A(m) lﬁ <)
Alm) + N ili > r(q)
Then it is easily verified that /' is a CL-labelling of Q|gq. O

Before discussing the analogue of Lemma 4.4, we consider the analogues of the
other results, Corollaries 4.2, 4.3, and 4.4 The analogue of Corollary 4.2, that every
interval in a CL-shellable poset is CL-shellable, is immediate from the definition.
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The analogue of Corollary 4.3 that states that the rank-selected subposet P, of a CL-
shellable poset P is CL-shellable was proven by Bjdrner and Wachs [8, 8.1]. The
analogue of Corollary 4.4 that states that CL-shellable posets are rank-connected is
a special case of Corollary 4.4 itself.

It remains to prove the analogue of Lemma 4.4 that if ge Q, then Q oc g is CL-
shellable if and only if Q is too. This is Lemma 12.2 below. As we noted with EL-
shellability, it is not clear how to prove this from the definition of lexicographic
labellings. What enables us to establish the result in this case, unlike before, is a
powerful tool for proving results about CL-shellability due to Bjorner and Wachs.

Recall that the elements of a graded poset which cover 0 are called atoms. A
graded posct P of rank d + 2 is said to admit a recursive atom ordering (RAO) if
d =0 or if d > 0 and there is an ordering a,, a,, ..., a, of the atoms of P which
satisfies:

(12.3) Forallj=1,2,...,1t, [a;, 1] admits a RAO in which the atoms of La;, 1] that
come first in the ordering are those that cover some a; where i < j.

(12.4) Foralli < j, if a,, a; < y then there exists k < j and an element z such that
a, a; -z < y.

* Note that a RAO does not order the elements of P of every rank. For example, the
same clements of rank 2 may be ordered differently in the atom orderings of
different intervals [a;, 1].

Although RAO is harder to define and to grasp than CL-shellability, it is more
useful for induction proofs. The key result is this.

Theorem 12.2. [8,3.2] A graded poset P admits an RAO if and only if P is CL-
shellable.

We can now prove our Lemma.

. e . s
Lemma 12.2 If qe Q, then Q oc q is CL-shellable if and only if Q is CL-shellable.

T A A
Proof. First suppose Q oc g hasa RAO. If ¢ is not an atom of 0, then Q hasa RAO by
induction on the rank of Q. So suppose g is an atom of Q. Then take the RAO for

Q oc q and delete the copy of ¢ which comes later in the atom ordering. It can be
checked that this leaves a RAO for Q.
Conversely, suppose Q has a RAO and g€ Q. By induction on the rank of Q, it

can be shown that Q oc g admits a RAQO if ¢ is not an atom of Q. If ¢ is an atom of 0,
simply insert the new copy of g immediately after the original copy of ¢ in the RAO

N ; : i PR
of Q. It is straightforward to check that this gives a RAO of Q o g. L]

Theorem 12.1 now follows from the results above just as Theorem 4.1 following
from Lemmas 4.1-4.4.

Acknowledgement. We thank P. Frankl for his suggestions for improving the exposition of this
paper.
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