
GEORGIA SOUTHERN TALK 2018

Throughout the talk R is a commutative Noetherian local ring with maximal ideal m and residue
field kkk = R/m. The plan of the talk is to investigate kkk as an R-module in order to deduce properties
of R.

The ring R is Noetherian means that every ideal of R is finitely generated.
The ring R is local means that m is the only maximal ideal of R.
A good example of a c.n.l.r. to keep in mind is: Let V be a variety in An, p be a point on

V , R = kkk[x1, . . . ,xn]/I(V ) be the coordinate ring of V , P be the ideal of R which consists of all
elements of R which vanish at p and R = RP = (R \P)−1R be the ring of rational functions on V
which are defined at p.

A second example of a c.n.l.r. is R = kkk[x1, . . . ,xn]/I, where I is primary to (x1, . . . ,xn).
The first time the R-module structure of kkk was used to give important information about R oc-

curred in the 1950’s. It has always been known what it means to be a smooth point on algebraic
variety. (It means that the Jacobian matrix at the point has the right rank.) In the 1930’s Krull
recognized that rings with the property that

(1) µ(m) = dimR

were pretty special. (One has dimR≤ µ(m) by the Krull principal ideal theorem. Equality holds in
an extremal situation. Now-a-days when equality holds, we say that R is a regular local ring. I do
not know what name, if any Krull gave the ring.) In the 1940’s Zariski recognized that rings with
(1) roughly corresponded to smooth points (at least if kkk is a perfect field). In the 1950’s there was
a very strong movement that properties should be defined in such a way that they can be checked
locally. It is hard to see that the property (1) localizes. There is a direct argument that shows that
if R satisfies (1), then localizations of R also satisfy (1). This argument is due to Nagata; it is long
and hard, and it came after the observation of Serre that I am about to describe. In the 1950’s,
Serre proved that R satisfies (1) if and only if the global dimension of R is finite. It is quite clear
that the hypothesis R has finite global dimension localizes. Serre’s proof is straightforward (if
one knows homological algebra). If R satisfies (1), then the Koszul complex is a finite resolution
of kkk by free R-modules. Use the fact that TorR(−,−) can be computed using either component
to see that pdR(−) < ∞. Serre’s proof was the first time homological algebra had been used to
prove an important new result in commutative algebra/ algebraic geometry. Suddenly mainstream
commutative algebraists and algebraic geometers started to take Cartan-Eilenberg and homolog-
ical algebra seriously. The Koszul complex was borrowed directly from Algebraic Topology. In
Algebraic Topology, the Koszul complex is the simplicial chain complex associated to a simplex.

Rather than write a Koszul complex on the board (This is a project that amuses me always; but I
am not sure it conveys much information to the audience), I will just write the crude information:
the ranks of the Betti numbers. The Koszul complex is an exterior algebra; so the Betti numbers
are binomial coefficients
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If I am going to talk about (usually infinite) sequences of Betti numbers; I should organize these
sequences. A combinatorist would naturally use the generating function:

PR(t) =
∞

∑
i=0

βit i

where the minimal resolution of kkk by free R-modules is

· · · → Rβ1 → Rβ0 → 0.

So Serre’s Theorem says

Theorem. The local ring R of dimension n is regular if and only if PR(t) = (1+ t)n.

The next theorem along these lines is due to Tate and then Gulliksen

Theorem. The local ring R is a complete intersection if and only if PR(t) has the form (1+t)n

(1−t2)m for
some integers m and n.

Tate’s contribution (in the inaugural issue of IJM) is to say, “One can always get a DG algebra
which is a resolution of kkk by free R-modules.” Start with

R→ kkk→ 0

Adjoin (exterior) variables of degree 1 to kill the first homology:

R〈e1, . . . ,en〉 → kkk→ 0

This much is just the Koszul complex.
Adjoin (divided power variables) of degree 2 to kill the second homology:

R〈e1, . . . ,en,T1, . . . ,Tm〉 → kkk→ 0

Adjoin (exterior variables) of degree 3 to kill the third homology:

R〈e1, . . . ,en,T1, . . . ,Tm,U1, . . . ,U`〉 → kkk→ 0

etc.

Tate proved that if R is a complete intersection, then the Tate resolution is

R〈e1, . . . ,en,T1, . . . ,Tm〉 → kkk→ 0.

Gulliksen proved that the Tate complex is always a minimal resolution. He also proved that the
2-step Tate complex is a resolution if and only if R is a complete intersection. At this point the
combinatorial calculation is easy:

R〈e1, . . . ,en;T1, . . . ,Tm〉= R〈e1, . . . ,en〉⊗R〈T1, . . . ,Tm〉.

The Hilbert series for R〈e1, . . . ,en〉 is (1+ t)n and the Hilbert series for R〈T1, . . . ,Tm〉 is 1
(1−t2)m .

Still back in the 1950’s Serre asked (in Local Algebras and Multiplicities LNM 11) and Ka-
plansky asked (apparently in class) if PR(t) is always a rational function.

Evidence and Comments:

• All known examples were rational functions.
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• Serre had produced a coefficient-wise upper bound which is a rational function:

PR(t)� (1+ t)edim(R)

1− ∑
1≤ j

dimkkk H j(KR)t j+1 .

• It is always wonderful to describe something infinite with finite data.

• Structural information can be read from the denominators if the Poincaré series is rational. How
fast do the Betti numbers grow? Are they always eventually non-decreasing?

Serious effort was put into proving that all Poincaré series are rational in Paris, Moscow, Stock-
holm, Oslo, Chicago.

Most of the results were reduction results “It suffices to show ...”
Here are some particularly noteworthy approaches.

• Jack Shamash (PhD Chicago 1966) wrote a series of 4 papers “The Poincaré series of a local ring
II, III, IV” that describe change of ring formulas for Poincaré series. These papers contain many
of the ideas that became “Eisenbud operators” and “matrix factorization”.

• Golod (Moscow) characterized the rings whose Poincaré series attain the Serre upper bound in
terms of Massey operations. Now-a-days these rings are called Golod rings and they continue to
be an object of study.

• Eagon (Chicago PhD) found a resolution of kkk by free R modules, for all R. His resolution has the
Betti numbers of the Serre upper bound; but his resolution is usually not minimal. It is minimal
precisely if R is a Golod ring. (Eagon’s resolution provides a constructive proof of Serre’s upper
bound Theorem.)

• Gulliksen (Oslo) and Levin (Chicago PhD) wrote the wonderful Queen’s Lecture notes “Homol-
ogy of local rings” (1969). This is the only “published” version of of Eagon’s resolution.

•Roos (Stockholm) connected the study of PR(t), when R is Artinian to the study of ∑i dimkkk Hi(ΩX)t i

where X is a finite simply-connected CW complex with cohomology ring R and Ω(−) means loop
space.

Then one day in 1979 or 1980 Richard Stanley went to tea at MIT and he asked one of the
graduate students, David Anick, “David, what are you doing these days?” Anick was taking a
course in Algebraic Topology with Munkres and in answer to a homework question he had come
across a really weird CW-complex, the generating function of the homology of its loop space was
not a rational function. This problem sounded familiar to Stanley; he promised to write to his
friends in Stockholm. Anick flew to Stockholm. His homework solution/PhD thesis is published
in the Stockholm preprint series; his work appears in Comptes Rendus; the paper is published in
the Annals; etc.

In the mean time, people simplified the Anick example (although it wasn’t very complicated)
and gave examples with smaller parameters.

• In 1983, Bøgvad gave a Gorenstein ring with an irrational Poincaré series.
• In 2015 Löfwall-Lundqvist-Roos give a Gorenstein numerical semigroup ring

kkk[{t i|i ∈ {36,48,50,52,56,60,66,67,107,121,129,135}}]
with irrational Poincaré series.
• In 2017 Roos gave a ring with embedding dimension 4 with an irrational Poincaré.

On the other side,
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• In 1980, Judy Sally proved stretched rings have rational Poincaré series
• In 1988, Avramov-Kustin-Miller proved that rings with small embedding codimension or

small linking number have rational Poincaré series.
• In 2009 Elias-Valla proved that almost stretched rings have rational Poincaré series
• In 2009 Casnati-Notari rings with multiplicity at most 10 have rational Poincaré series

Nonetheless, in 2012 (at the introductory workshop for the special year in Commutative Algebra
at MSRI – Mathematical Sciences Research Institute) Irena Peeva observed Poincaré series have
been studied for fifty years. It has been known for thirty years that some Poincaré series are
irrational; yet, “we still do not have a feel for which of the following cases holds.

(a) Most Poincaré series are rational, and irrational Poincaré series occur rarely in specially crafted
examples.

(b) Most Poincaré series are irrational, and there are some nice classes of rings (she said Golod
and complete intersection, I would add small embedding codepth) where we have rationality.

(c) Both rational and irrational Poincaré series occur widely.

One would like to have results showing whether the Poincaré series are rational generically, or are
irrational generically.”

In 2014, Marilena Rossi and Liana Şega took up Peeva’s challenge and proved that generic
Artinian Gorenstein rings have rational Poincaré series.

Şega, Vraciu, and I extended the Rossi-Şega result. Artinian Gorenstein rings have socle dimen-
sion one. We allow socles of arbitrary dimension but we put other restrictions on the socle.

Theorem. (2018, Kustin, Şega, Vraciu) Let R be a generic Artinian ring with top socle degree s.
If s is odd, 5≤ s, and socleR∩ms−1 =ms, then R has rational Poincaré series.

(The socle of the local ring (R,m) is 0 :R m= {r ∈ R |mr = 0}. “Socle” is a Greek word which
means “base”.)

Our proof does not do anything with even top socle degree; indeed, the main step in our proof
fails when the top socle degree is even. Bøgvad’s example has socle degree three. Şega-Rossi had
to give a special argument for socle degree 3; the special information they used is not available to
us. I don’t know what to make of the funny underlined hypothesis.

The main technique of proof is to exhibit a Golod homomorphism from a complete intersection
onto R. (Golod homomorphisms were defined by Levin and developed by Avramov. This is a
relative form of the concept of Golod rings. The idea that morphisms have properties (rather than
just objects have properties) is due largely to Grothendieck.) We compute in the algebra

H•(KR) = TorP
• (R,kkk) = F⊗P kkk,

where R = P/I, P is regular local, and F is a resolution of R by free P-modules. We prove that
there is an element g ∈ Tor1 so that

g ·Tortop−1 = Tortop .
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If m has 4 minimal generators and socle(R) is isomorphic to kkk(−4)2, then the Betti table for the
minimal homogeneous resolution of R by free Q-modules is

0 1 2 3 4
total : 1 12 19 10 2

0 : 1 . . . .
1 : . . . . .
2 : . 12 15 . .
3 : . . 4 10 .
4 : . . . . 2

It is clear that Tor1 ·Tor3 = 0, but Tor4 6= 0.

What does generic mean? Well there are two ways to parameterize Artinian algebras.
• Fix the variables. Fix the degrees of the generators. The coefficients then live in a giant

affine space. . . .
• Each Artinian algebra is defined by the system of differential operators that annihilates it.

Fix a basis of differential operators. The coefficients of the differential operators live in a
giant affine space. . . .

The advantage of the differential operator approach is that on a dense open set of the parameter
space, the corresponding algebras are compressed; that is, they have the maximum possible length
for the given socle degrees. So actually, the theorems are established for “compressed rings” rather
than “generic rings”, except for the Rossi-Şega result when the socle degree is 3.

• An Example of higher Massey product: Suppose z1, z2, z3 are cycles. If all products in
homology are zero, then there exist w1,2 and w2,3 such that d(w1,2) = z1z2 and d(w2,3) =
z2z3. Now notice that

d(w1,2z3) = d(w1,2)z3±w1,2d(z3) = z1z2z3 and d(z1w2,3) = d(z1)w2,3± z1d(w2,3) =±z1z2z3.

Thus, z1w2,3±w1,2z3 is a cycle which represents the Massey triple product of [z1], [z2], and
[z3]. It is reasonable to ask if this triple product is zero in homology; that is if the cycle
z1w2,3±w1,2z3 is also a boundary.
• A quick explanation of loop space. If (X ,x0) is a pointed topological space, then the loop

space of X , Ω(X) is the set of loops in X which start and stop at x0. The loop space Ω(X)
is a topological space and also a group.
• A field is perfect if every irreducible polynomial over the field has distinct roots in the

algebraic closure.


