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Abstract. Consider a height two ideal, I, which is minimally generated by m ho-

mogeneous forms of degree d in the polynomial ring R = k[x, y]. Suppose that one

column in the homogeneous presenting matrix ϕ of I has entries of degree n and all
of the other entries of ϕ are linear. We identify an explicit generating set for the

ideal A which defines the Rees ring R = R[It]; so R = S/A for the polynomial ring

S = R[T1, . . . , Tm]. We resolve R as an S-module and Is as an R-module, for all
powers s. The proof uses a rational normal scroll ring A = S/H with AA isomorphic

to the nth symbolic power of a height one prime ideal K of A. The ideal K(n) is

generated by monomials. Whenever possible, we study A/K(n) in place of A/AA
because the generators of K(n) are much less complicated then the generators of AA.

We obtain a filtration of K(n) in which the factors are polynomial rings, hypersurface

rings, or modules resolved by Eagon-Northcott complexes. The generators of I give
rise to an algebraic curve C in projective m− 1 space. The defining equations of the

fiber ring R/(x, y)R yield a solution of the implicitization problem for C.

Introduction.

Let I be a height two ideal in the polynomial ring R = k[x, y], with I minimally
generated by m forms of degree d. We consider the following questions. What is
the defining ideal, A, of the Rees ring

R = R[It] = R⊕ It⊕ I2t2 ⊕ · · · ?

What is the Hilbert function of R? The Rees ring R is equal to R[T1, . . . , Tm]/A,
what is the minimal resolution of R? What are the defining equations of the fiber
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ring F = k ⊗R R? What is the Hilbert function of F? What is the minimal
resolution of F = k[T1, . . . , Tm]/Ak[T1, . . . , Tm]? What is the Hilbert function of
R/Is and what is the minimal resolution of R/Is, for all powers s?

The question about the defining equations of the Fiber ring of I is of particular
interest to the geometric modeling community. The ideal I = (δ1, . . . , δm) gives rise
to an algebraic curve by way of the rational map φ : P1 → Pm−1 which sends (x0, y0)
to (δ1(x0, y0), . . . , δm(x0, y0)). The closed image of φ is an algebraic curve C. The
computation of the defining equations of the fiber ring F is called the implicitization
problem for the curve C; see, for example, [3,5,6,13]. One technique for attacking
the implicitization problem for C is to use the method of moving curves [8,7,4]. To
an algebraist, the moving curve ideal of φ is the defining ideal, A, of the Rees ring of
I. The Rees ring R Rees ring encodes many of the analytic properties of the variety
defined by I. It provides an algebraic realization for the classical notion of blowing-
up a variety along a subvariety, and plays an important role in the birational study
of algebraic varieties, particularly in the study of desingularization.

The Hilbert Burch Theorem guarantees that the ideal I is generated by the
maximal order minors of an m × (m − 1) matrix ϕ with homogeneous entries. In
addition to m and d the other important piece of data is the column degrees of ϕ.
In the present paper, the column degrees of ϕ are (1, . . . , 1, n). In other words, the
entries of one column of ϕ have arbitrary degree n, all of the other entries of ϕ are
linear. We identify the generators of A in Theorem 3.6. We resolve Is in Theorems
6.1.

In the proof of Theorem 1.11, we identify an ideal H of S = R[T1, . . . , Tm] with
A = S/H a normal domain and AA a height one ideal of A. The ideal AA is
necessarily prime; hence, AA is a divisorial ideal of A. The ring A is the coordinate
ring of a rational normal scroll; the divisor class group of such rings is studied in
[22]. We identify a prime ideal K in A so that the nth symbolic power, K(n), of K
is isomorphic to AA. The ideal K(n) in A is generated by monomials. We record
an explicit isomorphism K(n) → AA and an explicit generating set for AA. The
idea of looking for an uncomplicated divisorial ideal in a normal domain S/H was
inspired by our reading of [16] where the case m = 3 is studied: we reinterpreted
the Sylvester forms of [16] as isomorphisms of divisorial ideals in the hypersurface
ring defined by xT1 − yT2.

The generating set for AA that we calculate in section three is very explicit,
but fairly complicated. We use the isomorphic model K(n), which is generated
by monomials, rather than the explicit generators of AA, to make the rest of our
calculations. We compute the Hilbert function of R, the Hilbert function of Is, the
resolution of Is, and the resolution of R, all using essentially one trick. That is, we
refine the filtration 0 ⊆ AA ⊆ A in such a way that the corresponding refinement
of 0 ⊆ K(n) ⊆ A has factors that are easy for us to study; these factors are
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Eagon-Northcott modules (in the sense that they are resolved by Eagon-Northcott
complexes).

For the time being we return to the general case where the column degrees of
ϕ are arbitrary, rather than (1, . . . , 1, n). When one studies the questions of the
first paragraph it is important to know if the map φ : P1 → Pm−1 is birational.
Indeed, some hypothesis which is equivalent to “φ is birational” appears in many
of the results of [16] and [4]. In [23] we reprove Hurwitz’s Theorem [14, Chapt.
IV, sect. 2] in the present context. Let r be the degree of the map φ : P1 → C;
so r is also equal to the dimension of the field extension Quot(F) ⊆ Quot(R(d)),
where “Quot” means quotient field and R(d) is the dth Veronese ring associated
to R. We prove that there exist homogeneous forms f1, f2 of degree r in R such
that a generating set of I actually lives in the polynomial ring k[f1, f2]. Thus, the
non-birational case is the same as the birational case with a new set of variables
— results which hold in the birational case may be extended to the non-birational
case in a straightforward manner. Also, if the map φ is not birational, then the
number r must divide each column degree in the matrix ϕ; consequently, if the
column degrees of ϕ are relatively prime (as they are in the present paper), then
the map φ : P1 → Pm−1 is automatically birational. The paper [23] also contains a
number of results which hold under the hypothesis that at least one column of ϕ is
linear. These results apply in the situation of the present paper and they include
a proof that the Rees algebra R satisfies the regularity condition R1, a calculation
of the canonical module of R, and a calculation of the core of I.

In [24] we consider the questions of the first paragraph when none of the columns
of ϕ are linear. In this case we have not found a suitable candidate for H and an
uncomplicated divisorial ideal in S/H which is isomorphic to A/H. Instead, our
approach is based on ideas about Morley forms as found in [4,19,20].

Return now to the ambient hypothesis of the present paper. In other words,
assume that the column degrees of the presenting matrix ϕ are (1, . . . , 1, n). It
is shown in [10,21,28] that the Castelnuovo-Mumford regularity of Is is a linear
function of s for all s � 0. Indeed, in our notation, the aforementioned papers
guarantee that reg(Is) = sd+ e for some non-negative integer e and all s ≥ s0, for
some s0. We have resolved Is, for all s; so, we are able to read the exact value of
e and to determine the least value of s0 for which the above equation holds. The
answers are much different depending on the minimal number of generators of the
row space of the linear part, ϕ′, of ϕ. When the row space of ϕ′ can be generated
by fewer than m generators, then e = n− 1 and s0 = 1. On the other hand, when
the row space of ϕ′ requires m generators, then e = 0 and s0 = dn−1

σ2
e + 1, where

σ1 ≥ σ2 is the partition of m − 2 that corresponds to the canonical form of ϕ′. A
recent theorem of Eisenbud and Harris [12]) interprets the value of e.

In section one we establish the connection between the Rees algebra R(I) and a
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rational normal scroll ring. We also list the generators of the ideal K(n) which is
isomorphic to the defining ideal of R(I). In section two we find a canonical form for
the linear part of the matrix which presents the ideal I. The form is used in section
one; furthermore, this form allows us to calculate the regularity of Is for all s. We
record an explicit generating set for the defining ideal of R(I) in section three. In
section four we calculate the reduction number of I, the regularity and depth of
F(I), and the depth R(I). The filtration of K(n) by Eagon-Northcott modules is
in section five. In section six we resolve Is and verify the regularity calculation of
section two.

In this discussion R is a standard graded polynomial ring over a field. If N is a
finitely generated non-zero graded R-module and

0→ Fk → · · · → F0 → N → 0,

with Fi =
⊕βi

j=1R(−ti,j), is the minimal homogeneous resolution of N by free
R-modules, then the Castelnuovo-Mumford regularity of N is equal to reg(N) =
maxi,j{ti,j − i}.

Convention. Throughout this paper, k is a field; every ring A that we consider
is graded and finitely generated as an algebra over A0 = k; and every A-module
M =

⊕
Mi that we consider is graded and finitely generated. We use λA( ) for

the length of an A-module. It follows that

λk(Mi), λA

(⊕
i≤jMj⊕
i<jMj

)
, and dimk(Mi)

are equal. We write λ(Mi) for the common value. Of course, all three numbers are
equal to the value of the Hilbert function HM at i, denoted HM (i).

Convention. For each statement “S”, we define

χ(S) =
{

1, if S is true, and
0, if S is false.

In particular, χ(i = j) has the same value as the Kronecker delta δij .

Notation. If θ is a real number, then dθe and bθc are the “round up” and “round
down” of θ, respectively; that is, dθe and bθc are the integers with

dθe − 1 < θ ≤ dθe and bθc ≤ θ < bθc+ 1.
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The graded ring S =
⊕
i≥0

Si is a standard graded S0-algebra if S is generated as

an S0-algebra by S1 and S1 is finitely generated as an S0-module. For any terms
or concepts that we neglected to define, consult [1] first.

1. Rees algebras and rational normal scrolls.

Let k be a field, R be the standard graded polynomial ring R = k[x, y], and I
be a height two ideal of R which is minimally generated by m homogeneous forms
of degree d. The Hilbert-Burch Theorem guarantees that I is generated by the
maximal order minors of an m× (m− 1) matrix ϕ, with homogeneous entries. In
this paper, the entries of one column of ϕ have degree n; all of the other entries of
ϕ are linear. So, d = n+m− 2 and the resolution of I looks like

(1.1Goal ) 0→
R(−d− 1)m−2

⊕
R(−d− n)

ϕ−→ R(−d)m
[ δ1 . . . δm ]
−−−−−−−−−−−→ I → 0.

The Rees algebra of I is equal to R(I) = R[It]. Let S be the polynomial ring
S = R[T1, . . . , Tm] in m indeterminates over R and let A be the kernel of the R-
algebra homomorphism Φ: S → R(I) which sends Ti to δit. In this section we
identify a normal domain A = S/H so that A is the coordinate ring of a rational
normal scroll and AA is a height one ideal of A. We also identify an explicit
divisorial ideal K(n) of A which is generated by monomials and an explicit element
g of S. The main result of the present section is Theorem 1.11 where we prove that
the ideal AA of A is equal to the A-submodule (g/yn)K(n) of the quotient field of
A.

We identify an explicit generating set for A in Theorem 3.6. An explicit minimal
generating set for the ideal K(n) may be found in Theorem 3.2.

Assume n ≥ 2. Let ϕ′ denote the restriction of ϕ to R(−d− 1)m−2. We call ϕ′

the linear part of ϕ and we see that the image of ϕ′ is the degree d+ 1 part of the
first syzygy module of the R-module I. In other words,

ϕ′ : R(−d− 1)m−2 → [syzR1 (I)]d+1

is an isomorphism. The row space of ϕ′, RowSp(ϕ′), is the R-module generated
by the rows of ϕ′. Observe that the minimal number of generators of the R-
module RowSp(ϕ′), denoted µ(RowSp(ϕ′)), depends only on I and not on the set
of generators {δi} for I or the presenting matrix ϕ of I.



6 KUSTIN, POLINI, AND ULRICH

Definition 1.2. Given the resolution (1.1), with n ≥ 2, let ρ(I) be the parameterrow

ρ = µ(RowSp(ϕ′))−m+ 2.

The hypothesis that I has height two ensures that m− 1 ≤ µ(RowSp(ϕ′)); and
therefore,

1 ≤ ρ ≤ 2.

We have introduced the parameter ρ at the present time for expository reasons;
however, ultimately, ρ plays a significant role in our study. For example, the value
ρ determines whether the fiber ring of I is Cohen-Macaulay (see Theorem 4.2).
It also determines many analytic properties about the powers of the ideal I, see
sections 4 and 6.

Start with some minimal resolution for I:

0→ F1,1 ⊕ F1,2 → F0 → I,

with F0
∼= R(−d)m, F1,1

∼= R(−d − 1)m−2 and F1,2
∼= R(−d − n). We prove in

Proposition 2.1 that there exists a partition σσσ of m−2 into ρ pieces and there exist
bases for F0 and F1,1 such that the linear part of ϕ is equal to the m × (m − 2)
matrix

(1.3phi’ ) ϕ′ =


[
Dσ1 0

0 Dσ2

]
, if ρ = 2,[

Dσ1

0

]
, if ρ = 1,

where Da is the (a+ 1)× a matrix

Da =


x 0 0 0
−y x 0 0

0 −y
. . . 0

0 0
. . . x

0 0 0 −y

 ,

and {
σσσ = (σ1, σ2), with σ1 ≥ σ2 ≥ 1, and σ1 + σ2 = m− 2, if ρ = 2, or
σσσ = σ1 = m− 2, if ρ = 1.

We give the variables Tj of S alternate names. Let

(1.4Alt )
{
T1,j = Tj , if 1 ≤ j ≤ σ1 + 1, and
T2,j = Tσ1+1+j , if ρ = 2 and 1 ≤ j ≤ σ2 + 1.
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Definition 1.5. Adopt the data of (1.1) with ϕ = [ϕ′ ϕ′′ ], where ϕ′ is given inCN
(1.3) and φ′′ is an m × 1 matrix of homogeneous forms of degree n. Let ψ be the
2× (m− 1) matrix

ψ =
{

[ψ1 ψ2 ψ3 ] , if ρ = 2,
[ψ1 ψ2 ] , if ρ = 1,

where each ψi is a generic scroll matrix:

(1.6psi ) ψi =


[
Ti,1 Ti,2 . . . Ti,σi−1 Ti,σi

Ti,2 Ti,3 . . . Ti,σi Ti,σi+1

]
if 1 ≤ i ≤ ρ[

y

x

]
if i = ρ+ 1

Let H = I2(ψ), A = S/H, TTT be the matrix [T1 . . . Tm ], g ∈ S be the product
TTTϕ′′, K be the ideal of A which is generated by the entries in the top row of ψ,
and Q be the quotient field of A. The ideal K is a prime ideal of A; let K(n) be
the nth symbolic power of K.

It is convenient to think of the ring S as bi-graded.

(1.7bi- ) The variables {Ti} have degree (0, 1).
The variables {x, y} have degree (1, 0).

The last column of TTTϕ has the form

(1.8g ) g =
n∑
i=0

cix
n−iyi ∈ S,

where c0, . . . , cn are homogeneous elements of S of degree (0, 1) and g is a homoge-
neous polynomial of degree (n, 1). The generators of A which are not in H are all
described in terms of the polynomials c0, . . . , cn; see Definition 3.5.

Remark. Let V ⊆ Pm+1 be the variety defined by I2(ψ). We observe that when
ρ = 1, then the defining equations of V do not involve the variable Tm. In other
words, in this case, V is the cone of a variety which lives in Pm.

Observation 1.9. The ideal H and the polynomial g are contained in A.O5.1

Proof. The symmetric algebra Sym(I) is equal to

S

I1 (TTTϕ)
,
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and the homomorphism Φ: S → R(I) factors through the natural quotient map
S → Sym(I); so,

I1 (TTTϕ) ⊆ A.

In particular, g = TTTϕ′′ is in A. Write ψ = [ψ′ ψ′′ ], where ψ′ is first m−2 columns
of ψ and ψ′′ is the final column of ψ. Observe that the product TTTϕ′ is also equal to

(1.10here ) [x −y ]ψ′.

Each entry of the matrix (1.10) is equal to a 2 × 2 minor of ψ which involves the
last column. Let δ be a 2 × 2 minor of ψ which does not involve the last column
of ψ. Cramer’s rule, applied to (1.10), shows that (x, y)δ ⊆ A; but the ideal A is
prime and A ∩R = {0}; so δ is also in A. �

Theorem 1.11. Retain the data of Definition 1.5. The A-submodule (g/yn)K(n)main1
of Q is contained in A and is equal to AA.

Proof. If Ti ∈ K, then Tix = Ti+1y in A. It follows that (x, y)K ⊆ (y)A and
(x, y)nKn ⊆ (yn)A. The divizorialization of the ideal Kn in A is K(n); hence,
(yn) :Kn = (yn) :K(n) and

g ∈ (x, y)n ⊆ (yn) :Kn = (yn) :K(n).

We conclude that the A-submodule (g/yn)K(n) of Q is contained in A. Let L be
the pre-image in S of the ideal (g/yn)K(n) of A = S/H. We see that

ynL ⊆ (g) +H ⊆ A.

The ideal A is prime and y /∈ A. Thus,

H ⊆ L ⊆ A

are ideals of S with H and A are prime. Furthermore, the height of H is m−2; the
dimension of S is m + 2; and the dimension of the Rees ring R[It] is 3. It follows
that A has height m− 1. The proof that L = A follows quickly from the following
three facts. (This style of reasoning was suggested to us by [16].)
(1.12) g ∈ L \H,6.17

(1.13) L is unmixed, and6.19

(1.14) L 6⊆ (H,x, y).6.18

Indeed, (1.12) ensures that L has height m− 1, (1.13) ensures that every associ-
ated prime of the S-module S/L has height m − 1. The ideal (H,x, y) has height
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m− 1 but is not an associated prime of S/L by (1.14); hence, there is an element
w ∈ (x, y)k[x, y] which is regular on S/L. It follows that Iw = Rw, Sym(I)w and
R[It]w are both polynomial rings in one variable over Rw, and the natural map
Sym(I)w → R[It]w is an isomorphism. We have I1(TTTϕ)w ⊆ Lw ⊆ Aw and the
the outer ideals are prime of the same height. We conclude that Lw = Aw; and
therefore, L = A.

We establish the three facts, beginning with (1.12). The polynomial g of degree
(n, 1) may be found in (1.8). Order the variables of S by T1 > · · · > Tm > y > x
and order the monomials of S by the reverse lexicographic ordering. We know that
the

(
m−1

2

)
two by two minors of ψ form a Gröbner basis for H and we know that

the initial ideal of H is generated by
{Ti,jTi,k | 1 ≤ i ≤ k and 2 ≤ j ≤ k ≤ σi}
∪{T1,iT2,j | 2 ≤ i ≤ σ1 + 1 and 1 ≤ j ≤ σ2}
∪{Ti,jy | 1 ≤ i ≤ 2 and 2 ≤ j ≤ σi + 1}, if ρ = 2, and

{T1,jT1,k | 2 ≤ j ≤ k ≤ σ1} ∪ {T1,jy | 2 ≤ j ≤ σ1 + 1}, if ρ = 1.

We identify an element h of H for which the initial term of g − h is either T1y
n

or Tσ1+2y
n. In either case, the initial term of g − h is not in the initial ideal of

H (recall from(1.4) that some of the variables of S have two names); therefore,
g − h 6∈ H and g 6∈ H. The linear form cn is

∑m
i=1 αiTi for some αi ∈ k. Recall

the matrix ϕ from (1.5). The hypothesis that height Im−1(ϕ) = 2 forces α1 or
ασ1+2 to be non-zero. Indeed, if α1 and ασ1+2 are both zero, then the (1,m − 1)
and (σ1 + 2,m− 1) entries of ϕ are both elements of the ideal (x), the rank of the
matrix ϕ|x=0 is m− 2, and Im−1(ϕ) ⊆ (x). If α1 6= 0, then take h = 0. The initial
term of g is α1T1y

n and the proof of (1.12) is complete in this case. If α1 = 0, then
ασ1+2 6= 0 and we take

h =
σ1+1∑
i=2

yn−1αi(yTi − xTi−1).

The initial term of g− h is ασ1+2Tσ1+2y
n and the proof of (1.12) is complete in all

cases.
Now we prove (1.13). The ideal K is a height one prime ideal of the normal

domain A and therefore the symbolic power K(n) is a divisorial ideal of A. To show
that the ideal L of S is unmixed, it suffices to prove that the height one ideal LA
of A is isomorphic, as an A-module, to the divisorial ideal K(n) of A. We saw in
(1.12) that g 6∈ H. Thus, g/yn is a non-zero element of the fraction field Q of A
and

(1.15GL ) multiplication g/yn : K(n) → LA is an A-module isomorphism.
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Finally, we prove (1.14). Recall that Q is the fraction field of A. We know from
(1.15) that the A-submodules LA and g

ynK
(n) of Q are equal. We show (1.14) by

showing that g
ynK

(n) 6⊆ (x, y)A. We compute

(x, y)A :QK(n).

Our notation means that (x, y)A and K(n) are A-submodules of Q and : is calcu-
lated in Q; that is,

(x, y)A :QK(n) = {α ∈ Q | αK(n) ⊆ (x, y)A}.

Notice first that (x, y) = (y) :QK. The element y is in K; so, (y) :QK is an ideal of
A and the assertion (x, y) = (y) :QK is a statement about geometric linkage. The
ideal (x, y)n+1A is divisorial; so we have

(x, y)A :QK(n) = ((y) :QK) :QK(n) = (y) :QKK(n) = y−n[(yn+1) :QKK(n)]

= y−n[(yn+1) :QKn+1] = y−n(y, x)n+1A.

If the polynomial g, of degree (n, 1), were in (x, y)n+1S + H, then degree consid-
erations show that g would be in H, and this possibility was ruled out in (1.12).
Thus, g/yn 6∈ 1

yn (y, x)n+1 = (x, y)A :QK(n) and the proof is complete. �

2. Matrices with linear entries.

Let ϕ be the matrix of (1.1). In Proposition 2.1 we prove that there exist row
and column operations on ϕ which transform the linear part of ϕ into a matrix of
the form described in (1.3). Fix the polynomial ring R = k[x, y] over the field k.
For each non-negative integer a, let D(a) be the (a+ 1)× a matrix with

D(a)i,j =


x, if i = j and 1 ≤ j ≤ a,
y, if i = j + 1 and 1 ≤ j ≤ a, and
0 otherwise.

We see that D(0) is invisible,

D(1) =
[
x
y

]
, and D(2) =

x 0
y x
0 y

 .
The matrix Da of section 1 is the same as the matrix D(a) of the present section,
with y replaced by −y.
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Proposition 2.1. Let M be an m × (m − 2) matrix whose entries are homoge-P28.1
neous linear forms from R. Suppose that there exists a column vector ϕ′′ in Rm of
homogeneous forms of the same degree, such that the ideal of maximal minors of
[M ϕ′′ ] is an ideal of height two in R. Then there exist matrices A ∈ GLm(k)
and B ∈ GLm−2(k) and non-negative integers b ≤ a, with a+ b = m− 2, such that

(2.2dab ) AMB =
[
D(a) 0

0 D(b)

]
.

Remark. If b = 0 and a = m− 2, then the matrix on the right side of (2.2) is[
D(m− 2)

0

]
,

where 0 represents a 1×m−2 matrix of zeros. Observe that µ(RowSp(M)) = m−1
and the parameter ρ of (1.2) is 1. In the language of (1.3), this is the situation in
which the partition σσσ of m− 2 consists of 1 piece σσσ = (m− 2).

Proof. We first translate the hypothesis that Im−1 (ϕ) has height two (for ϕ equal to
[M ϕ′′ ]) into a statement strictly about M . The ideal Im−1(ϕ) is not affected by
row and column operations on ϕ; so, the ideal of maximal minors of [AMB Aϕ′′ ]
has height two for all A ∈ GLm(k) and B ∈ GLm−2(k). In particular, each column
of AMB generates an ideal of height two. In fact, however, according to Lemma
2.7, even more is true:

(2.3cond )
If A ∈ GLm(k) and B ∈ GLm−2(k), then AMB does not contain
a p× q submatrix of zeros for any pair of positive integers (p, q)
with p+ q = m.

The proof of the present result is by induction on m. The assertion is obvious
when m = 3. Henceforth, 4 ≤ m. Let M be the image of M in the ring R/(y). We
see that M = xM ′ for some m× (m− 2) matrix M ′ with entries in k. The matrix
M ′ must have rank m − 2; otherwise, there exist invertible matrices A and B so
that the entries of one column of AMB all are in the ideal (y). It follows that there
exist invertible matrices A and B with

AM ′B =
[

Im−2

02×(m−2)

]
;

and therefore every entry in the bottom two rows of AMB is in the ideal (y). Some
entry of the bottom two rows of AMB is not zero by (2.3). Thus, further row and
column operations yield a matrix of the form[

M1 M2

0 y

]
.
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The (m−1)×(m−3) matrix M1 satisfies (2.3) because if there exist A1 ∈ GLm−1(k)
and B1 ∈ GLm−3(k) so that A1M1B1 contains an p1 × q1 zero submatrix, then
there exist invertible matrices A and B so that AMB contains an (p1 +1)× q1 zero
submatrix.

By induction M may be transformed into

(2.4form )

D(a) 0 C1

0 D(b) C2

0 0 y

 .
for two non-negative integers b ≤ a with a+b = m−3, where C1 and C2 are column
vectors. Use column operations to remove all x’s from C1 and C2, except possibly
in the bottom row. Use row operations to remove all y’s from C1 and C2. Thus,
M may be transformed into a matrix of the form (2.4) with

(2.5ci ) Ci =


0
...
0
cix


for some ci ∈ k. At least one of the constants c1 or c2 must be non-zero. If c1 is
not zero, then pre-multiply and post-multiply by

A =

 c−1
1 I 0 0
0 I 0
0 0 1

 and B =

 c1I 0 0
0 I 0
0 0 1

 ,
respectively, to transform c1 into 1. The constant c2 may be treated in a similar
manner. Thus, M may be transformed into a matrix of form (2.4) with (2.5) and
one of three cases: 

c1 = 1, c2 = 0 case 1
c1 = 0, c2 = 1 case 2
c1 = c2 = 1 case 3.

The third case may be transformed into the second case using

A =


Ia−b 0 0 0

0 Ib+1 −Ib+1 0
0 0 Ib+1 0
0 0 0 1

 and B =


Ia−b 0 0 0

0 Ib Ib 0
0 0 Ib 0
0 0 0 1

 .
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In the second case, (2.4) is readily seen to be

(2.6** )
[
D(a) 0

0 D(b+ 1)

]
,

and in the first case, one may rearrange the rows and columns of (2.4) to obtain[
D(a+ 1) 0

0 D(b)

]
.

Finally, we notice that if b+ 1 > a, then one may rearrange the rows and columns
of (2.6) to obtain [

D(b+ 1) 0
0 D(a)

]
. �

Lemma 2.7. Let ϕ be an m× (m−1) matrix with entries from some commutative’a+b
ring. Suppose that there are positive integers p and q with p+ q = m and

ϕ =
[
Z S
T U

]
,

where Z is an p× q matrix of zeros and S, T , and U are matrices. Then the ideal
Im−1(ϕ) is contained in the principal ideal (detT ).

Proof. It suffices to establish this result in the generic situation where the ring is
a polynomial ring over the integers and each entry of ϕ is an indeterminate. The
matrices S, T , and U , have shape p× (p−1), q×q, and q× (p−1) respectively. Let
ϕi (respectively Si) represent the determinant of ϕ (resp. S) with row i deleted.
If p < i, then the rows [Z S ] are linearly dependent and ϕi = 0. If i ≤ p, then
ϕi = ±Si detT . �

Observation 2.8. One can arrange the data of Definition 1.5 so that the term7-28
ynT1 appears in g with a non-zero coefficient.

Proof. It suffices to show that one may modify ϕ in order to have ϕ′′1 /∈ (x), keeping
ϕ′ unchanged.

Proposition 2.1 shows how to apply row and column operations to the matrix
ϕ = [M ϕ′′ ] in order to to produce the matrix [AMB Aϕ′′ ], where AMB has
the form of (2.2). It is possible to apply more row and column operations in order
to guarantee that the top element of Aϕ′′ is not in the ideal (x). Indeed, it is shown
in the proof of (1.12) that it is not possible for (Aϕ′′)1 and (Aϕ′′)a+2 to both be
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in (x). If (Aϕ′′)1 ∈ (x), then add a copy of row a+ 2 to row 1. This row operation
may transform [

D(a) 0
0 D(b)

]
into

[
D(a) xE1,1

0 D(b)

]
,

where Ei,j is the (a + 1) × b elementary matrix with 1 in position (i, j) and 0
elsewhere. One can remove the unwanted x using row and column operations
which do not involve row one. The first step, subtract column 1 from column a+ 1
and add row a+ 3 to row 2, transforms[

D(a) xE1,1

0 D(b)

]
into

[
D(a) xE2,2

0 D(b)

]
,

without harming the top entry in the augmented column. One repeats this trick
until the x slides off the edge. �

Corollary 2.9. If I is a height two ideal in R = k[x, y], then the resolution ofC2.4
I is given in (1.1) if and only if there exists non-negative integers a and b, with
a + b = m − 2, and homogeneous forms F1 and F2 in R, with degF1 = n + a and
degF2 = n+ b such that

I = (x, y)bF1 + (x, y)aF2.

Proof. Start with the data a, b, F1, and F2. Write

F1 =
a∑
i=0

αix
a−iyi and F2 =

b∑
i=0

βix
b−iyi,

for homogenous forms αi and βi of degree n. Let

ααα =

αa...
α0

 and βββ =

 βb...
β0

 .
Observe that

det [Da ααα ] = F1 det [Db βββ ] = F2,

and the ideal generated by the maximal order minors of the matrix[
Da 0 ααα
0 Db βββ

]
is equal to I.

The converse is established in Proposition 2.1. �
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Example 2.10. If F1 = yn+a and F2 = xn+b, then I is the monomial idealE2.5

(yd, xyd−1, . . . , xbyd−b) + (xd−aya, . . . , xd−1y, xd).

The following proof was prompted to us by a question of Craig Huneke.

Corollary 2.11. Adopt the notation of Corollary 2.9 with b ≤ a, and write d =C2.6
n+ a+ b. For every s ≥ 1 one has

regIs = max{sd, sd− (s− 1)b+ n− 1} .

Proof. Write m = (x, y). Notice that the regularity of a homogeneous m-primary
ideal is the smallest power of m contained in it. Notice that Is is generated by
forms of degree sd and

Is =
s∑
i=0

msd−deg(F i1F
s−i
2 )F i1F

s−i
2 ⊂ (F1, F2)s ∩msd .

Hence mt ⊂ Is if and only if mt ⊂ (F1, F2)s and t ≥ sd. In other words,

reg Is = max{sd, reg(F1, F2)s} .

Finally, F1, F2 are a regular sequence of forms of degrees n + b ≤ n + a. Hence
(F1, F2)s is presented by the s+ 1 by s matrix

F2

−F1 F2

−F1 ·
· ·
· ·
· F2

−F1


From this minimal homogeneous resolution one sees that

reg(F1, F2)s = s(n+ a) + n+ b− 1 = sd− (s− 1)b+ n− 1. �

It is shown in [10,21,28] that the regularity of Is is a linear function of s for
all s � 0. Indeed, in our notation, the aforementioned papers guarantee that
reg(Is) = sd+ e for some non-negative integer e. From Corollary 2.11, we read the
exact value of e and the least value of s for which the above equation holds. The
answers depend on the value of ρ. In Section 6 we resolve each power Is; thereby
confirming the present calculations, see especially Corollary 6.8.
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Corollary 2.12. Let I be the ideal of Definition 1.5 and s be a positive integer.C2.7
(1) If ρ = 1, then reg Is = sd+ n− 1 for all s ≥ 1.

(2) If ρ = 2, then reg Is = sd if and only if n−1
σ2

+ 1 ≤ s.
Proof. If ρ = 1, then the parameter b of Corollary 2.11 is equal to zero and
max{sd, sd − (s − 1)b + n − 1} is equal to sd + n − 1 for all s ≥ 1. If ρ = 2,
then the parameter b of Corollary 2.11 is equal to σ2 and reg Is = sd if and only if
sd ≥ sd− (s− 1)σ2 + n− 1. �

3. Explicit generators for the defining ideal of the Rees algebra.

The main result of this section is Theorem 3.6 where we identify an explicit
generating set for the defining ideal A of the Rees algebra R(I). Adopt the data
of Definition 1.5 with

(3.13.1 ) ` = ρ+ 1, σ` = 1, y = T`,1, and x = T`,2.

In this notation, the matrix ψ` of (1.6) is

ψ` =
[
T`,1
T`,2

]
.

Accoding to Theorem 1.11, we need to identify generators for the ideal L in S with
gK(n) = ynLA. The following minimal generating set for K(n) is calculated in [22].

Theorem 3.2. A k-tuple aaa = (a1, . . . , ak) of non-negative integers is eligible ifKupn

0 ≤ k ≤ ρ and
k∑
u=1

auσu < n. If aaa is an eligible k-tuple, then f(aaa) and r(aaa) are

defined by:
k∑
u=1

auσu + f(aaa)σk+1 < n ≤
k∑
u=1

auσu + (f(aaa) + 1)σk+1

and

r(aaa) =
k∑
u=1

auσu + (f(aaa) + 1)σk+1 − n+ 1.

The ideal K(n) of A is equal to

K(n) = ({TaaaT f(aaa)
k+1,1Tk+1,j | aaa is an eligible k-tuple and 1 ≤ j ≤ r(aaa)})A,

where Taaa =
k∏
u=1

T auu,1.

Remark. The empty tuple, ∅, is always eligible, and we have

f(∅) = d nσ1
e − 1, r(∅) = σ1d nσ1

e − n+ 1, and T ∅ = 1.
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Definition 3.3. Recall the polynomials c0, . . . , cn of (1.8).-1D6.1
(a) For integers a and b with a+ b ≤ n and 0 ≤ a, define the polynomial ∆a,b to be

b∑
k=0

ca+kx
b−kyk = cax

b + ca+1x
b−1y + · · ·+ ca+by

b, if 0 ≤ b,

0, if b < 0.

In particular g = ∆0,n. Furthermore, ∆a,b is a homogeneous element of S of degree
(b, 1).
(b) If 0 ≤ a ≤ n, then write ∆a to mean ∆a,n−a. So

∆a = cax
n−a + ca+1x

n−a−1y + · · ·+ cny
n−a,

and ∆a is a homogeneous element of S of degree (n− a, 1).
(c) For each 4-tuple of non-negative indices (i, a, b, γ) with

1 ≤ i ≤ ρ, b+ 1 ≤ γ ≤ σi + 1, and a+ b ≤ n,

define πi,a,b,γ ∈ S of degree (0, 2) to be

πi,a,b,γ =
b∑

k=0

ca+kTi,γ−k = caTi,γ + ca+1Ti,γ−1 + · · ·+ ca+bTi,γ−b.

(d) If 1 ≤ i ≤ ρ and 0 ≤ a ≤ n− σi + 1, then let πi,a mean πi,a,σi−1,σi+1; so πi,a is
equal to

σi−1∑
k=0

ca+kTi,σi+1−k = caTi,σi+1 + ca+1Ti,σi + · · ·+ ca+σi−1Ti,2.

(e) If (i, s, j) are non-negative integers with 1 ≤ i ≤ ρ and 1 ≤ j ≤ σi + 1− s, then
let π′i,s,j mean πi,n−s,s,s+j .

Remarks 3.4. (a) Reverse the order of summation in the polynomial π′i,s,j to write1R6.8

π′i,s,j =
s∑

k=0

cn−kTi,j+k = cn−sTi,j+s + · · ·+ cn−1Ti,j+1 + cnTi,j .

(b) If the non-negative integers a, b, γ satisfy a+ b ≤ n and 1 ≤ γ ≤ b, then

∆a,b = xb−γ+1∆a,γ−1 + yγ∆a+γ,b−γ .
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The polynomial ∆a,b of is homogeneous in x and y of degree b. This formula
amounts to the statement that every term in ∆a,b is divisible by either yγ or xb−γ+1.
At any rate, the left side is(

cax
b + · · ·+ ca+γ−1x

b−γ+1yγ−1
)

+
(
ca+γx

b−γyγ + · · ·+ ca+by
b
)

= xb−γ+1
(
cax

γ−1 + · · ·+ ca+γ−1y
γ−1
)

+ yγ
(
ca+γx

b−γ + · · ·+ ca+by
b−γ) ,

which is the right side.
(c) If N is negative, then the sum

∑
a+b=N

is zero; if N is a non-negative integer then

the sum
∑

a+b=N

is taken over all pairs of non-negative integers (a, b), with a+b = N .

(d) We calculate in S. If s1 and s2 are elements of S, we write s1 ≡ s2 to mean
that s1 − s2 ∈ H.

Definition 3.5. For each pair (aaa, j), where aaa is an eligible tuple and 1 ≤ j ≤ r(aaa),1D5.3
we define a polynomial G(aaa,j) in S.
(a) If 1 ≤ j ≤ r(∅), then let

G(∅,j) = fj = T1,σ1+1−r(∅)+j
∑

p+q=f(∅)−1

T p1,1T
q
1,σ1+1π1,pσ1 + T

f(∅)
1,1 π′1,σ1+1−r(∅),j .

(b) If (a1) is an eligible 1-tuple, and 1 ≤ j ≤ r(a1), then let

G((a1),j) = ga1,j =



T2,j+σ2+1−r(a1)T
f(a1)
2,σ2+1

∑
p+q=a1−1

T p1,1T
q
1,σ1+1π1,pσ1

+T a1
1,1T2,j+σ2+1−r(a1)

∑
p+q=f(a1)−1

T p2,1T
q
2,σ2+1π2,a1σ1+pσ2

+T a1
1,1T

f(a1)
2,1 π′2,σ2+1−r(a1),j .

(c) If aaa = (a1, a2) is an eligible 2-tuple, then r(aaa) = 1. Let

G(aaa,1) = ha1,a2 =


xn−a1σ1−a2σ2T a2

2,σ2+1

∑
p+q=a1−1

T p1,1T
q
1,σ1+1π1,pσ1

+xn−a1σ1−a2σ2T a1
1,1

∑
p+q=a2−1

T p2,1T
q
2,σ2+1π2,a1σ1+pσ2

+T a1
1,1T

a2
2,1∆a1σ1+a2σ2 .

(d) The ideal L of S is equal to

H +
(
{G(aaa,j) | aaa is an eligible tuple and 1 ≤ j ≤ r(aaa) }

)
.

We are now able to state the main result of this section. The ideal A which
defines the Rees algebra R(I) was introduced in the first paragraph of section 1.
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Theorem 3.6. The ideals A and L of the ring S are equal.A=L

Proof. In light of Theorem 1.11, we need only show that LA is equal to the A-
submodule of (g/yn)K(n) of Q. This calculation is carried out in Lemma 3.10.g. �

Remarks 3.7.1R6.1
(a) Observe that

fj is homogeneous of degree (0, f(∅) + 2),
ga1,j is homogeneous of degree (0, a1 + f(a1) + 2), and
ha1,a2 is homogeneous of degree (f(a1, a2) + 1, a1 + a2 + 1).

(b) Let 0s be the s-tuple (0, . . . , 0). Observe that G(0ρ,1) = g. Indeed, if ρ = 2,
then h0,0 = ∆0g, and if ρ = 1, then

g0,1 = T2,2

∑
p+q=n−2

T p2,1T
q
2,2π2,p + Tn−1

2,1 π2,n−1,1,2

= x
∑

p+q=n−2

ypxqcp + yn−1(cn−1x+ cny) = g.

Observation 3.8. If a, i, and j are integers with 0 ≤ a, 1 ≤ i ≤ ρ, 1 ≤ j, and1t6.7
j + a ≤ σi + 1 , then xaTi,j ≡ yaTi,j+a.

Proof. The ideal

I2

[
Ti,1 Ti,2 . . . Ti,σi−1 Ti,σi y
Ti,2 Ti,3 . . . Ti,σi Ti,σi+1 x

]
is contained in H. A quick induction completes the proof. �

Observation 3.9. Take 1 ≤ i ≤ ρ.112.22
(a) If 0 ≤ a ≤ n− σi + 1, then Ti,1x∆a,σi−1 ≡ yσiπi,a.
(b) If 0 ≤ s ≤ n and 1 ≤ j ≤ σi − s+ 1, then Ti,j∆n−s ≡ ysπ′i,s,j.

Proof. Use Observation 3.8 to see the left side of (a) is

σi−1∑
k=0

ca+k

(
xσ−kTi,1

)
yk ≡

σi−1∑
k=0

ca+k

(
yσi−kTi,σi−k+1

)
yk = yσi

σi−1∑
k=0

ca+kTi,σi−k+1,

and this is the right side of (a). In a similar manner, we see that the left side of (b)
is
s∑

k=0

cn−s+k(Tjxs−k)yk ≡
s∑

k=0

cn−s+kTi,j+s−ky
s−kyk = ysπi,n−s,s,j+s = ysπ′i,s,j . �
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Lemma 3.10.L46.1

(a) If (a1, 0) and (a1 + 1, 0) are eligible tuples, then T1,1ha1,0 ≡ yσ1ha1+1,0.

(b) If (a1, a2) and (a1, a2 + 1) are eligible tuples, then T2,1ha1,a2 ≡ yσ2ha1,a2+1.

(c) If (a1) is eligible, ρ = 2, and 1 ≤ j ≤ r(a1), then

T2,jha1,f(a1) ≡ yσ2+1−r(a1)ga1,j .

(d) If ρ = 2 and 1 ≤ j ≤ r(∅), then T1,jhf(∅),0 ≡ yσ1+1−r(∅)fj.

(e) If ρ = 1 and (a1) and (a1 + 1) are eligible 1-tuples, then T1,1ga1,1 ≡ yσ1ga1+1,1.

(f) If ρ = 1 and 1 ≤ j ≤ r(∅), then T1,jgf(∅),1 ≡ yσ1+1−r(∅)fj.

(g) The ideals gK(n) and ynLA of A are equal.

Proof. We have

ha1,0 = xn−a1σ1
∑

p+q=a1−1

T p1,1T
q
1,σ1+1π1,pσ1 + T a1

1,1∆a1σ1 .

The facts

xσ1T1,1 ≡ yσ1T1,σ1+1,

∆a1σ1 = xn−(a1+1)σ1+1∆a1σ1,σ1−1 + yσ1∆(a1+1)σ1 , and
T1,1x∆a1σ1,σ1−1 ≡ yσ1π1,a1σ1

may be found in Observation 3.8, Remark 3.4.b, and Observation 3.9, respectively.
These facts establish (a). The same type of methods are used to prove (b). One
uses xσ2T2,1 ≡ yσ2T2,σ2+1 in the first two summands of T2,1ha1,a2 . In the third
summand one uses

∆a1σ1+a2σ2 = xn−a1σ1−(a2−1)σ2x∆a1σ1+a2σ2,σ2−1 + yσ2∆a1σ1+(a2+1)σ2 .

Once again, Observation 3.9 yields

T2,1x∆a1σ1+a2σ2,σ2−1(x, y) = yσ2π2,a1σ1+a2σ2 .

We prove (c). Notice that

n− a1σ1 − f(a1)σ2 = σ2 − r(a1) + 1;
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hence Observations 3.8 and 3.9 yield

T2,jx
n−a1σ1−f(a1)σ2 ≡ T2,j+σ2−r(a1)+1y

σ2−r(a1)+1 and

T2,j∆a1σ1+f(a1)σ2 ≡ y
σ2+1−r(a1)π′2,σ2+1−r(a1),j .

The proof of (d) is similar. The equality

n− f(∅)σ1 = σ1 + 1− r(∅)

implies

T1,jx
n−f(∅)σ1 ≡ yσ1+1−r(∅)T1,σ1+1−r(∅)+j and

T1,j∆f(∅)σ1 ≡ y
σ1+1−r(∅)π′1,σ1+1−r(∅),j .

When ρ = 1, we have σ2 = 1, T2,1 = y, T2,2 = x, a1σ1 + f(a1) = n − 1, and
r(a1) = 1. We quickly calculate

π′2,1,1 = cn−1x+ cny and π2,a1σ1+1 = ca1σ1+px.

We now have

x
∑

p+q=f(a1)−1

ypxqπ2,a1σ1+p + yf(a1)π′2,1,1 = ∆a1σ1 and

ga1,1 = xn−a1σ1
∑

p+q=a1−1

T p1,1T
q
1,σ1+1π1,pσ1 + T a1

1,1∆a1σ1 .

The arguments of (a) and (d) establish (e) and (f), respectively.
We prove (g) by showing that

gTaaaT
f(a)
k+1,1Tk+1,j ≡ ynG(aaa,j),

whenever aaa is an eligible k-tuple and 1 ≤ j ≤ r(aaa). Start with ρ = 2. Recall that
g = h0,0 and T3,1 = y. If aaa = (a1, a2) is an eligible tuple and j = 1, then (a) and
(b) show that

gT a1
1,1T

a2
2,1T

f(aaa)
3,1 T3,j = ya1σ1+a2σ2+f(aaa)+1ha1,a2 = ynG(aaa,1).

If (a1) is an eligible tuple and 1 ≤ j ≤ r(a1), then (a), (b), and (c) yield

gT a1
1,1T

f(a1)
2,1 T2,j = ya1σ1+f(a1)σ2+σ2+1−r(a1)ga1,j = ynG((a1),1).
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If 1 ≤ j ≤ r(∅), then (a) and (d) yield

gT
f(∅)
1,1 T1,j = yf(∅)σ1+σ1+1−r(∅)fj = ynG(∅,1).

Now take ρ = 1. Recall that g = g0,1 and y = T2,1. If (a1) is an eligible tuple and
1 ≤ j ≤ r(a1), then r(a1) = 1 = j and (e) gives

gT a1
1,1T

f(a1)
2,1 T2,j = ya1σ1+f(a1)+1ga1,1 = ynG(a1),j).

Finally, if 1 ≤ j ≤ r(∅), then (e) and (f) give

gT
f(∅)
1,1 T1,j = yf(∅)σ1+σ1+1−r(∅)fj = ynG(∅,j). �

4. Depth, reduction number, regularity, and Hilbert function.

This section is mainly about the fiber ring F(I) = R(I)/(x, y). We compute
the depth, reduction number, and regularity of F(I). A related invariant, the pos-
tulation number of F(I), is computed in Corollary 6.9. Most of the results are
collected in Theorem 4.2; these results are proved, in a more general setting, in
[22]; see Theorem 4.3. The main result of this section is Theorem 4.4 where we
calculate the reduction number, r(I), of I when ρ = 2. Observation 4.1 shows how
we will use the rational normal scrolls of Section 1 to calculate r(I). Theorem 4.5
is a general result connecting reduction number and Hilbert function for rings of
minimal multiplicity; it is based on the Socle Lemma of Huneke-Ulrich. Proposi-
tion 4.7 is a curious result which allows us to circumvent the characteristic zero
hypothesis in the Socle Lemma; we create a ring in which the bracket powers of the
maximal ideal are equal to the ordinary powers, independent of the characteristic
of the field.

A reduction of an ideal I is an ideal J ⊆ I with JIi = Ii+1 for all large i. The
reduction number of I with respect to the reduction J is

rJ(I) = min{i ≥ 0 | JIi = Ii+1}.

A reduction J of I is minimal if J does not contain any other reduction of I. The
reduction number of I is defined by

r(I) = min{rJ(I) | J is a minimal reduction of I}.

Let B = ⊕i≥0Bi be a standard graded algebra over an infinite field k with D
equal to the Krull dimension of B. The unique maximal homogenous ideal of B
is denoted by mB . Every minimal reduction of mB is generated by D linear forms
in mB . Sometimes it is convenient to write r(B) in place of r(mB). The reduction
number of an ideal I is equal to be the reduction number of the maximal ideal in
the fiber ring F(I); that is r(I) = r(F(I)).
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Observation 4.1. Adopt the notation of Definition 1.5. In light of Observationch
2.8, we may assume that ynT1 appears in g with a non-zero coefficient. Let ˇ mean
“image in Aˇ = A/(x, y)A”. The following statements hold.

(1) The ring Aˇ is defined by the maximal minors of a scroll matrix and the ideal
(K(n))ˇ is the nth symbolic power of a height one prime ideal of Aˇ.

(2) The fiber ring of I is equal to F(I) = Aˇ/Aˇ.

(3) The ideals Aˇ and (K(n))ˇ(−1) of Aˇ are isomorphic.

(4) The reduction number of I is equal to r(I) = r
(
Aˇ/(K(n))ˇ

)
+ 1.

Proof. Assertion (1) is essentially obvious. The ringAˇ equals k[T1, . . . , Tm]/I2(ψˇ)
for

ψˇ =
{

[ψ1 ψ2 ] , if ρ = 2,
ψ1, if ρ = 1.

The ideal (K(n))ˇ of Aˇ is equal to
T
f(∅)
1,1 (T1,1, . . . T1,r(∅)), if ρ = 1,

T
f(∅)
1,1 (T1,1, . . . T1,r(∅)) +

f(∅)∑
a1=0

T a1
1,1T

f(a1)
2,1 (T2,1, . . . T2,r(a1)), if ρ = 2;

and therefore, (K(n))ˇ is the nth symbolic power of the ideal of Aˇ which is gen-
erated by the top row of ψˇ. For (2), we have F(I) = R(I)/(x, y)R(I) and
R(I) = A/A.

We prove (3). Recall that g = g(x, y) =
∑n
i=0 cix

n−iyi. Recall also that the
ideals

ynAA and g(x, y)K(n)

of A are equal. Fix a pair of subscripts i, j with 1 ≤ i ≤ ρ and 1 ≤ j ≤ σi. Multiply
both sides by Tni,j . Notice that, in A,

Tni,jg =
n∑
i=0

ci(Ti,jx)n−i(Ti,jy)i =
n∑
i=0

ci(Ti,j+1y)n−i(Ti,jy)i = yng(Ti,j+1, Ti,j).

Conclude that
ynTni,jAA = yng(Ti,j+1, Ti,j)K(n).

The ring A is a domain and y 6= 0; so,

Tni,jAA = g(Ti,j+1, Ti,j)K(n).
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The equality
Tn1,1Aˇ = g(T1,2, T1,1)(K(n))ˇ

is especially interesting to us because we have arranged the data in order to know
that the monomial Tn+1

1,1 appears in g(T1,2, T1,1) with a non-zero coefficient. The
argument used to prove (1.12) shows that g(T1,2, T1,1) is not zero in the domain Aˇ.
The elements Tn1,1 and g(T1,2, T1,1) both are regular on Aˇ. Assertion (3) follows.

We prove (4). We have seen that

r(I) = r(F(I)) = r (Aˇ/Aˇ) .

The reduction numbers of the two-dimensional standard graded rings Aˇ/Aˇ and
Aˇ/(K(n))ˇ may be computed by reducing modulo two generic linear forms, see, for
example, [26] or [27]. Let k(u) be the appropriate purely transcendental extension of
k, let `1 and `2 be two generic linear forms in Aˇ⊗kk(u), and let represent image in
Aˇ = (Aˇ⊗k k(u))/(`1, `2)(Aˇ⊗k k(u)). The ideals Aˇ and (K(n))ˇ(−1) of Aˇ are
isomorphic because z, `1, `2 is a regular sequence in Aˇ ⊗k k(u) for every non-zero
element z in Aˇ. We know, see for example Proposition 5.2, that λ(Aˇs) = m− 2
for all s ≥ 1; so,(

Aˇ/Aˇ
)
s

= 0 ⇐⇒ λ
(
Aˇ
)
s

= m− 2 ⇐⇒ λ
(

(K(n))ˇ
)
s−1

= m− 2

⇐⇒
(
Aˇ/(K(n))ˇ

)
s−1

= 0, and

r(I) = r(Aˇ/Aˇ) = max{s | (Aˇ/Aˇ)s 6= 0}

= max{s | (Aˇ/(K(n))ˇ)s 6= 0}+ 1 = r(Aˇ/(K(n))ˇ) + 1. �

Theorem 4.2. Adopt the notation of Definition 1.5 with n ≥ 2.T1

(a) We have

depth grI(R) + 1 = depthR(I) = depthF(I) =
{

2, if ρ = 1,
1, if ρ = 2.

In particular, F(I) is Cohen-Macaulay if and only if ρ = 1.

(b) If ρ = 1, then

r(I) = r(mF(I)) = regF(I) = dn−1
σ1
e+ 1.
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(c) If ρ = 2, then reg(F(I)) = dn−1
σ2
e+ 1.

Remark. The value of r(I) = r(mF(I)) when ρ = 2 is computed in Theorem 4.4.

Proof. We apply Theorem 1.11 and Observation 4.1. The isomorphisms

R(I) = A
AA , F(I) = Aˇ

AˇAˇ , AA ∼= K(n)(−1), and AˇAˇ ∼= K(n)ˇ(−1)

tell us that

depthR(I) = depthA/K(n), depthF(I) = depthAˇ/(K(n))ˇ, and

regF(I) = reg(Aˇ/AˇA) = reg(AˇA)− 1 = regK(n).

One may now read regF(I) = dn−1
σρ
e + 1 from Theorem 4.3. If ρ = 2, then one

may also read depthR(I) = depthF(I) = 1. If ρ = 1, then the variable Tm is not
involved in

ψ =
[
T1 . . . Tm−2 y
T2 . . . Tm−1 x

]
, ψˇ =

[
T1 . . . Tm−2

T2 . . . Tm−1

]
,

K(n), or K(n)ˇ; so Tm is regular on A/K(n) and Aˇ/(K(n))ˇ and Theorem 4.3 tells
us that

depthA/(Tm,K(n)) = depthAˇ/(Tm, (K(n))ˇ) = 1.

Since R(I) is not Cohen-Macaulay, it follows that grI(R) is not Cohen-Macaulay
either by [25] and then depthR(I) = depth grI(R) + 1 by [17]. Finally, we recall
that if F(I) is a Cohen-Macaulay ring, then regF(I) = r(I); indeed both quantities
are equal to the top socle degree of F(I) modulo a linear system of parameters. �

Theorem 4.3. Let σ1 ≥ · · · ≥ σ` ≥ 1 and n ≥ 2 be integers, and let P be the4.3
polynomial ring

k[{Ti,j | 1 ≤ i ≤ ` and 1 ≤ j ≤ σi + 1}].

For each u, with 1 ≤ u ≤ `, let ψu be the generic scroll matrix

ψu =
[
Tu,1 Tu,2 . . . Tu,σu−1 Tu,σu
Tu,2 Tu,3 . . . Tu,σu Tu,σu+1

]
.

Let Ψ be the matrix
Ψ = [ψ1 . . . ψ` ] ,

A be the ring P/I2(Ψ), and K be the ideal in A generated by the entries of the top
row of Ψ. Then

depthA/K(n) = 1 and regK(n) = dn−1
σ`
e+ 1.

Proof. See [22]. �
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Theorem 4.4. If I is as in Definition 1.5 with ρ = 2, then the following statementsred1
hold.

(a) d nσ1
e ≤ r(I) ≤ dn−1

σ1
e+ 1.

(b) If σ1|n− 1, then r(I) = d nσ1
e = dn−1

σ1
e+ 1.

(c) r(I) = d nσ1
e ⇐⇒ H(K(n))ˇ(d nσ1

e) ≥ m− 2.

Remarks. 1. The exact value of H(K(n))ˇ(d nσ1
e) depends on the interaction between

the three integers σ1, σ2, and n, and is not difficult to calculate. One simply counts
the number of monomials of degree d nσ1

e = f(∅) + 1 that appear in the minimal
generating set for (K(n))ˇ listed in the proof of Observation 4.1.

2. We prove (a) now. Assertion (b) is obvious.

3. Part (a) shows that there are only two possible choices for r(I). Furthermore,
in the proof of (a), we learn a necessary condition for r(I) to take on the smaller
of the two values; namely, that (K(n))ˇ contain at least m− 2 linearly independent
homogeneous elements of degree d nσ1

e. The proof that this condition is sufficient
(i.e., part (c)) appears at the end of this section.

Proof of (a). Adopt the notation of Observation 4.1. So, Aˇ = k[T1, . . . .Tm]/I2(ψˇ)
and F(I) = Aˇ/Aˇ. The convention of (1.4) is in effect and each variable Ti has
two names.

We first establish the inequality on the right. Let J = (Tm, Tσ1+1 − Tσ1+2) and
write − for images in Aˇ = Aˇ/JAˇ. Notice that Tm, Tσ1+1 − Tσ1+2 form a linear
system of parameters in Aˇ/(K(n))ˇ; hence,

r(I) = r
(
Aˇ/(K(n))ˇ

)
+ 1 ≤ max{i | [Aˇ/(K(n))ˇ]i 6= 0}+ 1

= max{i | λ
(

((K(n))ˇ)i
)
< m− 2}+ 1.

The generators of (K(n))ˇ are listed in the proof of Observation 4.1. Observe that
T2,1T2,j = 0 in Aˇ, for 1 ≤ j ≤ σ2 + 1, because

T2,1T2,j = T1,σ1+1T2,j = T1,σ1−σ2+jT2,σ2+1 = 0.

Notice that all variables make sense. The first and last equations are due to J . The
middle equation always happens. So,

(K(n))ˇ = T
f(∅)
1,1

[
(T1,1, . . . , T1,r(∅)) + χ(f(f(∅)) = 0)(T2,1, . . . , T2,r(f(∅)))

]
.
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Observe immediately that ((K(n))ˇ)i = 0 for i < f(∅) + 1 = d nσ1
e and

(Aˇ)i = T i−1
1,1 Aˇ1 ⊆ (K(n))ˇ

for i > f(∅) + 1. Recall that

r(∅) = σ1 ⇐⇒ σ1|(n− 1) ⇐⇒ f(∅)σ1 = n− 1.

We now see that

r(I)− 1 ≤ max{i | λ
(

((K(n))ˇ)i
)
< m− 2} =

{
f(∅), if σ1|(n− 1),
f(∅) + 1, if σ1 6 |(n− 1);

hence, r(I)− 1 ≤ dn−1
σ1
e.

Now we establish the inequality on the left. Let `1 and `2 be two general linear
forms in k[T1, . . . , Tm], J be the ideal (`1, `2) of Aˇ, and represent image in
Aˇ = Aˇ/JAˇ. We see that `1, `2 forms a general linear system of parameters in
Aˇ/(K(n))ˇ; hence,

f(∅) ≤ max{i | λ
(

((K(n))ˇ)i
)
< m− 2} = r

(
Aˇ/(K(n))ˇ

)
= r(I)− 1

and d nσ1
e = f(∅) + 1 ≤ r(I). �

The proof of Theorem 4.4(c) will be based in the next general result relating
reduction numbers to Hilbert functions. Assume that (A,m) is a one-dimensional
Cohen-Macaulay standard graded ring over a field with minimal multiplicity e, and
L is a homogeneous m-primary ideal. In this case it is obvious that r(A/L) < s
if and only if HL(s) ≥ e . The purpose of the following theorem is to prove an
analogous statement in dimension two. The first difference function of the Hilbert
function is denoted ∆ H and is defined by ∆ HM (i) = HM (i)−HM (i− 1).

Theorem 4.5. Let (A,m) be a standard graded domain over a field k. Assumesoc
that A is a two-dimensional Cohen-Macaulay ring with minimal multiplicity e. Let
s be a positive integer and L be a homogeneous ideal of A with dimA/L = 1. Let `
be a generic linear form defined over a purely transcendental extension field k′ of k
and assume that, after making a possible further field extension k′′ of k′,

(4.6cnd ) ms ⊂ ({ys | y ∈ A1 ⊗k k′′}) + (L, `).

One has
r(A/L) < s⇐⇒ (∆ HL)(s) ≥ e.
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Remark. The hypothesis (4.6) is automatically satisfied if the characteristic of k is
zero.

Proof. We replace A by A ⊗k k′. This does not change the reduction number of
A/L according to [26]. Write − for images in A = A/(`). Notice that A is a domain
by [15] and r(A/L) = r(A/L) again by [26], whereas ∆ HL = HL/`L. Moreover,
A/L is an Artinian ring. We need to show that Ls = As if and only if HL/`L(s) ≥ e.
Since HA(s) = e it remains to prove that HL(s) ≥ e if and only if HL/`L(s) ≥ e.
As HL(s) ≤ HL/`L(s) it suffices to show that if HL/`L(s) ≥ e then HL(s) ≥ e.

If A/L has a nonzero homogeneous socle element of degree j < s, then zm ⊂ L
for some homogeneous nonzero element z ∈ A of degree j. Hence HL(s) ≥ Hzm(s) =
Hm(s − j) because A is a domain. Clearly Hm(s − j) = e since s − j ≥ 1, which
gives HL(s) ≥ e.

Thus we may assume that the socle of A/L is concentrated in degrees ≥ s. For
the remainder of the proof we do not need anymore that A is a domain, thus we
may extend the ground field to assume that condition (4.6) holds. We wish to apply
the Socle Lemma [18,Cor. 3.11(i)] to the exact sequence

0 −→ (L : `/L)(−1) −→ A/L(−1) −→ A/L −→ A/(L, `) = A/L −→ 0 .

The statement of the Socle Lemma requires that the field have characteristic zero;
however, this hypothesis is only used in order to ensure that condition (4.6) is
satisfied. Also, the Socle Lemma requires ` to be a general linear form, but the
proof also works for generic linear forms, see [18, Prop. 3.5]. So the Socle Lemma
may be applied in the present situation. In our setting it says that if the socle
of A/L is concentrated in degrees ≥ s then so is L : `/L. Thus we can write
L : ` = L + K with K a homogeneous A-ideal concentrated in degrees ≥ s. It
follows that L ∩ (`) = `(L : `) = `L+ `K. Therefore [L ∩ (`)]s = [`L]s, which gives
[L]s = [L/(`L)]s. Thus HL(s) = HL/`L(s) ≥ e. �

In the next proposition we show that the homogeneous coordinate ring of any
rational normal curve satisfies assumption (4.6) regardless of the characteristic. If
one is only interested in characteristic zero, then Proposition 4.7 may be skipped.

Proposition 4.7. Let k′ be the field of rational functions k(λ1, . . . , λc) in c vari-P39.2
ables over the field k and let k′′ be any extension field of k′ for which the polynomial

P (x) = xc − λcxc−1 − · · · − λ2x− λ1

splits into linear factors. Let A be the standard graded algebra k′′[T1, . . . , Tc]/I2(ψ),
where ψ is the scroll matrix

ψ =

[
T1 T2 . . . Tc−1 Tc

T2 T3 . . . Tc
c∑
i=1

λiTi

]
.
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Then there exist homogeneous linear forms v1, . . . , vc in A1 such that vs1, . . . , v
s
c is

a k′′-basis for As for all s ≥ 1.

Proof. Recall that A is a one-dimensional standard graded ring of minimal mul-
tiplicity and T1 is an A-regular linear form. (Some readers will find Proposition
5.2 to be helpful at this point.) Hence for any s ≥ 1 one has dimAs = c and
T s−1

1 T1, . . . , T
s−1
1 Tc form a basis of As. Once we have identified suitable candi-

dates for v1, . . . , vc, then we need only verify that vs1, . . . , v
s
c are linearly indepen-

dent. Ultimately, we pick v1, . . . , vc to be a basis for A1 which yields a simultaneous
diagonalization of all of the linear transformations ϕj = T−1

1 Tj : A1 → A1.
Let k′′′ ⊆ k′′ be the splitting field of P (x) over k′. Since λ1, . . . , λc are variables

over k, the polynomial P (x) has c distinct roots. In particular, the field extension
k′ ⊂ k′′′ is separable.

The matrix representation of the endomorphism ϕ2 = T−1
1 T2 : A1 → A1 with

respect to the basis T1, . . . , Tc is
0 λ1

1 0 · ·
1 · · ·

· · ·
· 0 ·

1 λc

 .

This being a companion matrix it follows that the minimal polynomial of ϕ2 is
P (x), which has c distinct roots in k′′′. Thus ϕ2 is diagonalizable over k′′′ with
eigenvectors, say, v1, . . . , vc.

On the other hand, for 2 ≤ j ≤ c one has T1Tj = T2Tj−1, hence ϕj = ϕ2ϕj−1.
Thus one sees by induction on j that v1, . . . , vc are eigenvectors for every ϕj . In
other words, there exist αi ∈ k′′′ with

Tjvi = αj−1
i T1vi .

Thus, mvi ⊂ AT1vi for 1 ≤ i ≤ c, and then ms−1vi ⊂ AT s−1
1 vi . In particular,

vsi ∈ AT
s−1
1 vi , say

(4.8eig ) vsi = βiT
s−1
1 vi.

for some βi ∈ k′′′.
Recall that k′[T1, . . . , Tc]/I2(Ψ) is a domain and k′ ⊂ k′′′ is a separable field

extension. Therefore A is reduced, hence vsi 6= 0, which gives βi 6= 0. Since T s−1
1 is

a non zerodivisor and βi are nonzero scalars, (4.8) shows that vs1, . . . , v
s
c are indeed

linearly independent over k′′′ and therefore also over k′′. �
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Proof of part (c) of Theorem 4.4. Start with the ring Aˇ and the ideal (K(n))ˇ of
Observation 4.1. From Theorem 4.4 (a) and Observation 4.1 we know that

d nσ1
e ≤ r(I) = r(Aˇ/(K(n))ˇ) + 1 .

Hence it suffices to show that

r(Aˇ/(K(n))ˇ) < d nσ1
e ⇐⇒ H(K(n))ˇ(d nσ1

e) ≥ m− 2.

First assume that H(K(n))ˇ(d nσ1
e) ≥ m−2 . Let ` be the linear form T1,σ1+1−T2,1

of Aˇ, and let denote images in the ring Aˇ = Aˇ/(`) . Clearly ` is a Aˇ-
regular element. Recall that T1,σ1+1 is regular on Aˇ/(K(n))ˇ, see [22, the proof of
1.4]. Furthermore T2,1 is an element of K and hence its image in Aˇ/(K(n))ˇ
is nilpotent. Therefore ` = T1,σ1+1 − T2,1 is regular on Aˇ/(K(n))ˇ. It fol-
lows that H

(K(n))ˇ
(d nσ1
e) = ∆ H(K(n))ˇ(d nσ1

e) . However, (K(n))ˇ is concentrated
in degrees at least d nσ1

e and therefore ∆ H(K(n))ˇ(d nσ1
e) = H(K(n))ˇ(d nσ1

e) . On the

other hand, r(Aˇ/(K(n))ˇ) ≥ r(Aˇ/(K(n))ˇ) . Hence, it suffices to prove that if
H

(K(n))ˇ
(d nσ1
e) ≥ m − 2, then r(Aˇ/(K(n))ˇ) < d nσ1

e. For this we wish to ap-

ply Theorem 4.5 to the integer d nσ1
e and the ideal (K(n))ˇ of the ring Aˇ . No-

tice that Aˇ is the homogeneous coordinate ring of a rational normal curve. In
particular, it is a two dimensional Cohen-Macaulay domain with minimal multi-
plicity m − 2. By Proposition 4.7 the ring Aˇ satisfies condition (4.6). Further-
more, (K(n))ˇ is a homogeneous ideal with dimAˇ/(K(n))ˇ = 1; thus, Theorem
4.5 implies that r(Aˇ/(K(n))ˇ) < d nσ1

e if ∆ H
(K(n))ˇ

(d nσ1
e) ≥ m − 2 . But again,

∆ H
(K(n))ˇ

(d nσ1
e) = H

(K(n))ˇ
(d nσ1
e). This completes the proof of the first implica-

tion.
Conversely, assume that r(Aˇ/(K(n))ˇ) < d nσ1

e. Now let Aˇ denote the ring ob-
tained from Aˇ by a purely transcendental extension of the field k and by factoring
out two generic linear forms. Write (K(n))ˇ = (K(n))ˇAˇ. Since Aˇ/(K(n))ˇ has
dimension two it follows that r(Aˇ/(K(n))ˇ) = r(Aˇ/(K(n))ˇ) , see [26]. There-
fore r(Aˇ/(K(n))ˇ) < d nσ1

e. Because Aˇ/(K(n))ˇ is Artinian and Aˇ is a one-
dimensional standard graded Cohen-Macaulay ring with minimal multiplicity m−2,
we conclude that H

(K(n))ˇ
(d nσ1
e) = HAˇ(d nσ1

e) = m− 2 . Clearly,

H(K(n))ˇ(d nσ1
e) ≥ H

(K(n))ˇ
(d nσ1
e).

Hence indeed H(K(n))ˇ(d nσ1
e) ≥ m− 2. �
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5. Eagon-Northcott modules.

Let I be the ideal of (1.1). In Theorem 6.1 we record the graded betti numbers
in the minimal homogeneous resolution of Is for all s. The main step in the proof
of this Theorem is the calculation of λ(Isz ) for all positive integers s and z and we

do this by calculating λ((S/H)(u,s)) and λ(K(n)
(u,s)) for each bi-degree (u, s). The

S-module S/H is resolved by an Eagon-Northcott complex and we have identified a
filtration {Eaaa} of K(n) so that each factor Eaaa/Daaa is an “Eagon-Northcott module”,
in the sense that is resolved by an Eagon-Northcott complex. See [2, Section 2C]
or [11, Section A2.6] for more information about these modules and complexes.
We define the Eagon-Northcott modules in Definition 5.1. The Hilbert function of
each Eagon-Northcott module, in the standard graded case, is given in Proposition
5.2. Lemma 5.4 and Corollary 5.5 show how to compute the Hilbert function
of an Eagon-Northcott module in a bi-graded situation. The main result of the
present section is Proposition 5.6, where we record the formula for λ((S/H)(u,s))
and λ

(
(Eaaa/Daaa)(u,s)

)
for each eligible tuple aaa and each bi-degree (u, s).

Definition 5.1. Let P be a ring, E and F be free P -modules of rank 2 and c,D10.5
respectively, and Ψ: F → E be a homomorphism of P -modules. Define the Eagon-
Northcott module EN[Ψ, P, r] by

EN[Ψ, P, r] =


coker(E∗ ⊗

∧2
F → F ) if r = −1

P/I2(Ψ) if r = 0
Symr(coker Ψ) if 1 ≤ r.

The defining map for EN[Ψ, P,−1] sends u ⊗ v to [Ψ∗(u)](v). When there is no
ambiguity about the ring P , we surpress the P and write EN[Ψ, r] in place of
EN[Ψ, P, r].

Convention. We define the binomial coefficient
(
j
i

)
for all integers i and j by

(
j

i

)
=


j(j − 1) · · · (j − i+ 1)

i!
if 0 < i,

1 if 0 = i, and

0 if i < 0.

If i and j are integers with 0 ≤ j, then
(
j
i

)
=
(
j
j−i
)
. If i is a nonnegative integer,

then
(−1
i

)
= (−1)i.
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Proposition 5.2. Let P be a standard graded polynomial ring over a field and letP11.4
ψ be a 2× c matrix of one-forms from P . Assume that ht I2(ψ) = c− 1 and let D
be the Krull dimension of P/I2(ψ). If r and s are integers, with −1 ≤ r ≤ c − 1,
then

(5.3ell ) λ(EN[ψ, r]s) = (r + 1)
(
s+D − 2

s

)
+ c

(
s+D − 2
s− 1

)
.

Remarks.
1. Notice that both sides of (5.3) are zero when s < 0.
2. If D = 0, then the right side of (5.3) is equal to

r + 1, if s = 0,
c− (r + 1), if s = 1, and
0, 2 ≤ s.

3. If D = 1, then the right side of (5.3) is equal to{
r + 1, if s = 0, and,
c, if 1 ≤ s.

Proof. The proof is by induction on D. Start with D = 0. In this case, the number
of variables in P is equal to ht I2(ψ) = c − 1. In particular, λ(P1) = c − 1. Let
F = P (−1)c and E = P 2. We view ψ as a map ψ : F → E. First, fix r ≥ 1. In this
case, EN[ψ, r] is minimally presented by

Sr−1E ⊗ F → SrE → EN[ψ, r]→ 0,

which is the same as

P (−1)rc → P r+1 → EN[ψ, r]→ 0.

It is clear that λ(EN[ψ, r]0) = r + 1. One may read that

λ(EN[ψ, r]1) = (r + 1)λ(P1)− rcλ(P0) = c− 1− r.

We know that I2(ψ) kills EN[ψ, r]. However, I2(ψ) is equal to the square of the
maximal ideal of P (notice that I2(ψ) ⊆ m2 and both ideals of P are minimally
generated by

(
c
2

)
elements of P2), and EN[ψ, r] is generated in degree zero; so

EN[ψ, r]s = 0 for all s ≥ 2.
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It is very easy to see that the assertion is correct for r = 0. We now consider
r = −1. The module EN[ψ, r] is minimally presented by

E∗ ⊗
∧2

F → F → EN[ψ, r]→ 0,

which is the same as

P (−2)2(c2) → P (−1)c → EN[ψ, r]→ 0.

We can now read that

λ(EN[ψ, r]s) =


0, if s = 0,
c, if s = 1, and
cλ(P1)− 2

(
c
2

)
= 0, if s = 2.

Once again, all of the generators of EN(ψ, r) have the same degree. As soon as we
know that EN[ψ, r]2 = 0, then we know that EN[ψ, r]s = 0 for all s ≥ 2.

Now we treat positive D. Suppose that the element x of P1 is regular on P/I2(ψ).
Let P̄ be P/(x) and ψ̄ be ψ ⊗P P̄ . The module EN[r, ψ] is perfect (in the sense of
[1, Def. 1.4.14]) and has the same associated prime ideals as P/I2(ψ). It follows
that

0→ EN[ψ, r](−1) x−→ EN[ψ, r]→ EN[ψ̄, r]→ 0

is an exact sequence; and therefore λ(EN[ψ, r]s) =
s∑
i=0

λ(EN[ψ̄, r]i). �

We now study the Hilbert function of the Eagon-Northcott modules in a bi-
graded situation. The main algebraic tool is Lemma 5.4, which has nothing to
do with grading. In Corollary 5.5, we apply Lemma 5.4 to the bigraded case of
interest.

Lemma 5.4. Adopt the notation of Definition 5.1. Assume that F = F ′ ⊕ F ′′ forL10.11
free modules F ′ and F ′′ where F ′′ has rank 1. Let Ψ′ : F ′ → E be the restriction of
Ψ to F ′ and Ψ′′ : F ′′ → E be the restriction of Ψ to F ′′. Assume that

grade I2(Ψ) ≥ c− 1.

If 0 ≤ r ≤ c− 1, then there is a short exact sequence

0→ EN[Ψ′, r − 1]⊗ F ′′ ι−→ EN[Ψ′, r] π−→ EN[Ψ, r]→ 0,

where π is the natural surjection and

ι(m⊗ v) =
{
m ·Ψ′′(v) for 1 ≤ r∧2 Ψ(m ∧ v) for r = 0.
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Proof. Recall that the Eagon-Northcott complex that is associated to EN[Ψ, r] is
EN[Ψ, r]• with

EN[Ψ, r]p =

{
Symr−pE ⊗

∧p
F if 0 ≤ p ≤ r

Dp−rE
∗ ⊗

∧p+1
F if r + 1 ≤ p.

Recall also, that if grade I2(Ψ) ≥ c− 1, then EN[Ψ, r]• is a resolution of EN[Ψ, r].
In the present situation, the decomposition F = F ′ ⊕ F ′′ induces a short exact
sequence of modules

0→
∧p

F ′ →
∧p

F →
∧p−1

F ′ ⊗ F ′′ → 0,

for all p. Furthermore, these short exact sequences of modules induce a short exact
sequence of complexes

0→ EN[Ψ′, r]• → EN[Ψ, r]• → EN[Ψ′, r − 1]•[−1]⊗ F ′′ → 0,

for all r. The corresponding long exact sequence of homology includes

H1(EN[Ψ, r]•)→ EN[Ψ′, r − 1]⊗ F ′′ ι−→ EN[Ψ′, r] π−→ EN[Ψ, r]→ 0.

The hypothesis grade I2(Ψ) ≥ c− 1 ensures that H1(EN[Ψ, r]•) = 0. �

Corollary 5.5. Retain the hypotheses of Lemma 5.4. Suppose that the ring PL10.11’
is equal to P ′[x, y] where P ′ is a standard graded polynomial ring over the field
k and x and y are new variables. View P as a bi-graded ring. The variables x
and y have degree (1, 0). Each variable from P ′ has degree (0, 1). Suppose Ψ′ is a
(c − 1) × 2 matrix of linear forms from P ′ and Ψ′′ =

[ y
x

]
. Let R be the standard

graded polynomial ring k[x, y]. If (u, s) is any bi-degree and r is any integer with
0 ≤ r ≤ c, then

λ(EN[Ψ, P, r](u,s)) = λ(Ru)λ(EN[Ψ′, P ′, r]s)− λ(R(−1)u)λ(EN[Ψ′, P ′, r − 1]s).

Proof. Apply Lemma 5.4 to obtain the short exact sequence

0→ EN[Ψ′, P, r − 1](−1, 0)→ EN[Ψ′, P, r]→ EN[Ψ, P, r]→ 0.

We have P = R⊗k P ′. The map Ψ′ : P (−1)m−2 → P 2 is the same as

1⊗Ψ′ : R⊗k P ′(−1)m−2 → R⊗k P ′
2;



DEFINING EQUATIONS OF REES ALGEBRAS 35

and therefore, EN[Ψ′, P, r] = R⊗k EN[Ψ′, P ′, r]. It follows that

λ((EN[Ψ, P, r])(u,s))

= λ((R⊗k EN[Ψ′, P ′, r])(u,s))− λ((R(−1)⊗k EN[Ψ′, P ′, r − 1])(u,s))

= λ(Ru)λ(EN[Ψ′, P ′, r]s)− λ(R(−1)u)λ(EN[Ψ′, P ′, r − 1]s). �

The rest of this section is devoted to proving Proposition 5.6. Adopt the notation
of Definition 1.5 with (3.1). Recall the notion of eligible k-tuple aaa = (a1, . . . , ak),
as well as f(aaa) and r(aaa), from the statement of Theorem 3.2. In [22] we put a total
order on the set of eligible tuples. For eligible tuples bbb > aaa we define ideals Ebbb ⊆ Eaaa
of A by induction. There is no convenient way to denote the eligible tuple which is
immediately larger than a particular eligible tuple aaa; consequently, we define two
parallel collections of ideals {Eaaa} and {Daaa} simultaneously. The ideal D∅ is equal
to zero. If aaa is an eligible tuple of positive length, then Daaa =

∑
bbb>aaa

Ebbb. If aaa is an

arbitrary eligible tuple, then

Eaaa = Daaa + TaaaT
f(aaa)
k+1,1(Tk+1,1, . . . , Tk+1,r(aaa)).

We have a filtration of K(n):

(0) ( E∅ ( · · · ( E0`−1 = K(n),

where 0s is the s-tuple (0, . . . , 0). It is also shown in [22] that the factor module
Eaaa/Daaa is isomorphic to the Eagon-Northcott module

EN[ψ>k, S/Pk, r(aaa)− 1](−taaa),

where ψ>k is the submatrix [ψk+1 · · · ψ` ] of ψ, Pk is the ideal

Pk = k[{Ti,j | 1 ≤ i ≤ k, 1 ≤ j ≤ σi}]

of S, and taaa is the twist

taaa =


(0,

k∑
u=1

au + f(aaa) + 1), if k < ρ,

(f(aaa) + 1,
k∑
u=1

au), if k = ρ.
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Proposition 5.6. Adopt the notation of Definition 1.5 with (3.1). Let (u, s) be an5main
arbitrary bi-degree.

(a)

λ((S/H)(u,s)) = λ(Ru)
((

s+ 1
s

)
+ (m− 2)

(
s+ 1
s− 1

))
−λ(R(−1)u)(m−2)

(
s+ 1
s− 1

)

(b)

λ
(

(E∅/D∅)(u,s)

)
=

λ(Ru)
[
r(∅)

(
s−f(∅)
s−f(∅)−1

)
+ (m− 2)

(
s−f(∅)
s−f(∅)−2

)]
−λ(R(−1)u)

[
(r(∅)− 1)

(
s−f(∅)
s−f(∅)−1

)
+ (m− 2)

(
s−f(∅)
s−f(∅)−2

)]

(c) If aaa = (a1) is an eligible 1-tuple, then λ
(

(Eaaa/Daaa)(u,s)

)
is equal to


χ(a1 ≤ s)λ(R(a1σ1 − n)u), if ρ = 1, or

χ(a1 + f(a1) + 1 ≤ s)
(

λ(Ru)(a1σ1 − n+ 1 + σ2(s− a1))
−λ(R(−1)u)(a1σ1 − n+ σ2(s− a1)),

)
if ρ = 2.

(d) If aaa = (a1, a2) is an eligible 2-tuple then

λ
(

(Eaaa/Daaa)(u,s)

)
= χ(s = a1 + a2)λ(R(a1σ1 + a2σ2 − n)u).

Proof. For (a) and (b) we apply Corollary 5.5 with P ′ = k[T1, . . . , Tm] and Ψ′ equal
to the first m− 2 columns of ψ. Thus,

λ((S/H)(u,s)) = λ((EN[ψ, S, 0])(u,s))

= λ(Ru)λ(EN[Ψ′, P ′, 0]s)− λ(R(−1)u)λ(EN[Ψ′, P ′,−1]s)

and

λ
(
(E∅/D∅)(u,s)

)
= λ

(
(EN[ψ, S, r(∅)− 1](0,−f(∅)− 1))(u,s)

)
=
{

λ(Ru)λ ((EN[Ψ′, P ′, r(∅)− 1](−f(∅)− 1))s)
−λ(R(−1)u)λ ((EN[Ψ′, P ′, r(∅)− 2](−f(∅)− 1))s) .

Apply Proposition 5.2, with c = m− 2 and D = 3, to establish (a) and (b).
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Take aaa = (a1) to be an eligible 1-tuple with ρ = 1. Apply Corollary 5.5 with
P ′ = k[Tm] and Ψ′ equal to the zero map. In this case, r(aaa) = 1, f(aaa)+1 = n−a1σ1,
EN[0, P ′, 0] = P ′, and EN[0, P ′,−1] = 0. We have

λ
(
(Eaaa/Daaa)(u,s)

)
= λ

((
EN

[[ y
x

]
, P ′[x, y], 0

]
(a1σ1 − n,−a1)

)
(u,s)

)
= λ(R(a1σ1 − n)u)λ(P ′(−a1)s).

If aaa = (a1, a2) is an eligible 2-tuple, then ρ must equal 2, r(aaa) = 1, f(aaa) + 1 =
n− a1σ1 − a2σ2,

λ
(
(Eaaa/Daaa)(u,s)

)
= λ

((
EN

[[ y
x

]
, k[x, y], 0

]
(a1σ1 + a2σ2 − n,−a1 − a2)

)
(u,s)

)
= λ(R(a1σ1 + a2σ2 − n)u)λ(k(−a1 − a2)s).

Finally, let aaa = (a1) be an eligible 1-tuple with ρ = 2. Apply Corollary 5.5 with
P ′ = k[T2,1, . . . , T2,σ2+1] and Ψ′ = ψ2 to see that

λ
(
(Eaaa/Daaa)(u,s)

)
= λ

(
(EN [[ψ2 ψ3 ] , P ′[x, y], r(aaa)− 1] (0,−a1 − f(aaa)− 1))(u,s)

)
=
{

λ(Ru)λ ((EN[ψ2, P
′, r(aaa)− 1](−a1 − f(aaa)− 1))s)

−λ(R(−1)u)λ ((EN[ψ2, P
′, r(aaa)− 2](−a1 − f(aaa)− 1))s) .

Apply Proposition 5.2, with c = σ2 and D = 2, to complete the calculation. �

6. The resolution of Is.
We resolve every power of the ideal I of Definition 1.5. Our answer is expressed in

terms of the parameter “a”, which is equal to the number of non-linear columns in
the matrix which presents Is. The resolution depends on the shape of the partition
σσσ which corresponds to I.

Theorem 6.1. Let I be the ideal of Definition 1.5 and s be a positive integer. Thepwrs4
minimal homogeneous resolution of Is has the form

0→ R(−sd− 1)b ⊕ F→ R(−sd)b0 → Is → 0,

with b0 = b+ a+ 1.

(1) If ρ = 1, then F =
a−1∑
u=0

R(−sd+ uσ1 − n), b = sd+
(
a
2

)
σ1 − an, and

a = min
{
s,
⌈
n−1
σ1

⌉}
.
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(2) If ρ = 2 and σ1 > σ2, then F =
a−1∑
u=0

R(−sd+ u(σ1 − σ2) + (s− 1)σ2 − n),

b = s(d+ aσ2) +
(
a
2

)
(σ1 − σ2)− a(n+ σ2), and

a =

{
min

{
s,
⌈
n−(s−1)σ2−1

σ1−σ2

⌉}
, if s ≤ n−2

σ2
+ 1,

0, if n−1
σ2

+ 1 ≤ s.

(3) If ρ = 2 and σ1 = σ2, then F = R(−sd+ (s− 1)σ2 − n)a,

b = s(d+ aσ2)− a(n+ σ2) and a =

{
s, if s ≤ n−2

σ2
+ 1 and

0, if n−1
σ2

+ 1 ≤ s.

Remark. It is worth noting that the non-linear columns in the presenting matrix
for Is all have the same degree for σ1 = σ2; however, these columns have distinct
degrees in other two cases.

Proof. The ring S is bi-graded and the quotient map

S � S/A = R(I)

sends S(u,s) � RuI
sts = Isu+sdt

s, where d is the degree of the generators of I; so,

λ(Isu+ds) = λ((S/A)(u,s)),

and, for all integers s and z,

λ(Isz ) = λ((S/A)(z−ds,s)).

The short exact sequence

0→ A/H → S/H → S/A → 0

gives
λ((S/A)z) = λ((S/H)z)− λ((A/H)z).

The element g/yn of the quotient field of A = S/H has degree (0, 1), since g has
degree (n, 1) and yn has degree (n, 0), and the isomorphism g/yn : K(n) → AA of
ideals satisfies λ(K(n)

(u,s−1)) = λ((A/H)(u,s)). It follows that

λ(Isz ) = λ((S/H)(z−ds,s))− λ(K(n)
(z−ds,s−1)).
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We have identified a filtration

{Eaaa | aaa is an eligible tuple}

of K(n); thus

(6.2lam4 ) λ(Isz ) = λ((S/H)(z−ds,s))−
∑
aaa

λ
(
(Eaaa/Daaa)(z−ds,s−1)

)
.

Each length on the right side of (6.2) has been calculated in Proposition 5.6. We
have

(6.3lam14 ) λ(Isz ) = b0λ(R(−sd)z)−N1λ(R(−sd− 1)z)−N2

for

N2 =


∑

(a1,a2) eligible

χ(a1 + a2 = s− 1)λ(R(−sd+ a1σ1 + a2σ2 − n)z), if ρ = 2,∑
(a1) eligible

χ(a1 ≤ s− 1)λ(R(−sd+ a1σ1 − n)z), if ρ = 1,

and integers b0 and N1. (There is no difficulty in recording the exact values of b0
and N1, but this is not necessary.)

When ρ = 2, we simplify N2 by replacing a2 with s− 1− a1. The parameter a1

must satisfy:

0 ≤ a1 ≤ s− 1 and a1σ1 + (s− 1− a1)σ2 < n.

Thus,

(6.4form’ ) N2 = N ′2λ(R(−sd− 1)z) +N ′′2

for N ′2 =
s−1∑
a1=0

χ(a1(σ1 − σ2) + (s− 1)σ2 − n = −1) and

N ′′2 =

s−1X
a1=0

χ(a1(σ1 − σ2) + (s− 1)σ2 − n ≤ −2)λ(R(−sd+ a1(σ1 − σ2) + (s− 1)σ2 − n)z).

When ρ = 1, we write N2 in the form (6.4) with N ′2 =
s−1∑
a1=0

χ(a1σ1 − n = −1) and

N ′′2 =
s−1∑
a1=0

χ(a1σ1 − n ≤ −2)λ(R(−sd+ a1σ1 − n)z).
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Let b = N1 +N ′2. Apply Lemma 6.6 to see that the minimal resolution of Is is

0→ R(−sd− 1)b ⊕ F→ R(−sd)b0 → Is → 0,

for F equal to

s−1∑
a1=0

χ(a1(σ1 − σ2) + (s− 1)σ2 − n ≤ −2)R(−sd+ a1(σ1 − σ2) + (s− 1)σ2 − n),

if ρ = 2; or
s−1∑
a1=0

χ(a1σ1 − n ≤ −2)R(−sd+ a1σ1 − n),

if ρ = 1 . Notice that the rank of F is equal to the number of non-linear columns
in the presenting matrix for Is. We next express F in a more transparent manner.

When ρ = 1, the constraint a1σ1 − n ≤ −2 is equivalent to

a1 ≤
⌊
n− 2
σ1

⌋
=
⌈
n− 1
σ1

⌉
− 1

and

F =
a−1∑
a1=0

R(−sd+ a1σ1 − n),

for a = min{s,
⌈
n−1
σ1

⌉
}.

Take ρ = 2. The parameter a1 is non-negative; so, F is zero if n−1
σ2

+ 1 ≤ s. We
think about s ≤ n−2

σ2
+ 1. If σ2 = σ1, then χ((s− 1)σ2 − n ≤ −2) = 1 and

F =
s−1∑
a1=0

R(−sd+ (s− 1)σ2 − n) = R(−sd+ (s− 1)σ2 − n)s.

If σ1 > σ2, then

a1(σ1 − σ2) + (s− 1)σ2 − n ≤ −2 ⇐⇒

a1 ≤
⌊
n− (s− 1)σ2 − 2

σ1 − σ2

⌋
=
⌈
n− (s− 1)σ2 − 1

σ1 − σ2

⌉
− 1,

and F =
a−1∑
a1=0

R(−sd+ a1(σ1 − σ2) + (s− 1)σ2 − n), for

a =

{
min

{
s,
⌈
n−(s−1)σ2−1

σ1−σ2

⌉}
, s ≤ n−2

σ2
+ 1,

0, if ρ = 2, n−1
σ2

+ 1 ≤ s.
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Finally, we see that the values of b0 and b are completely determined by a.
Indeed, rank is additive on short exact sequences; so, b0 = b + a + 1. Also, Is is
generated by the maximal minors of the matrix which presents Is. In other words,
sd is equal to the sum of the column degrees of this presenting matrix; that is,

(6.5tag4 )
b = sd+

a−1∑
a1=0

(a1(σ1 − σ2) + (s− 1)σ2 − n)

= sd+
(
a
2

)
(σ1 − σ2) + (s− 1)σ2a− na. �

Lemma 6.6. Let M be a homogeneous module of projective dimension one overL19.14
the standard graded polynomial ring R. Suppose that all of the generators of M
have degree D. Suppose further that b0, b1 and t1 ≤ t2 ≤ · · · ≤ tb1 are integers
which satisfy D < t1 and

λ(Mz) = b0λ(R(−D)z)−
b1∑
i=1

λ(R(−ti)z)

for all integers z. Then the minimal homogeneous resolution of M has the form

0→
b1⊕
i=1

R(−ti)→ R(−D)b0 →M → 0.

Proof. The hypotheses ensure that the minimal homogeneous resolution of M has
the form

(6.7RR194 ) 0→
b′1⊕
i=1

R(−t′i)→ R(−D)b
′
0 →M → 0

for some integers b′0, b′1, and t′1 ≤ t′2 ≤ · · · ≤ t′b′1 with D < t′1. Use (6.7) to compute
the Hilbert function of M ; so

b0λ(R(−D)z)−
b1∑
i=1

λ(R(−ti)z) = b′0λ(R(−D)z)−
b′1∑
i=1

λ(R(−t′i)z),

for all integers z. It follows that the free modules

F = R(−D)b0 ⊕
b′1⊕
i=1

R(−t′i) and F′ = R(−D)b
′
0 ⊕

b1⊕
i=1

R(−ti)

have the same Hilbert function. This forces the free R-modules F and F′ to be
equal; in other words, they have the exact same twists: b0 = b′0, b1 = b′1, and ti = t′i
for all i. �

The first two assertions of the following result may be read from the resolution
of Theorem 6.1. A different proof of these results may be found in Corollary 2.12.
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Corollary 6.8. Let I be the ideal of Definition 1.5 and s be a positive integer.reg
(1) If ρ = 1, then reg Is = sd+ n− 1 for all s ≥ 1.

(2) If ρ = 2, then reg Is = sd if and only if n−1
σ2

+ 1 ≤ s.

(3) The following statements are equivalent:
(a) Is = (x, y)sd,
(b) the minimal homogeneous resolution of Is has the form

0→ R(−sd− 1)b−1 → R(−sd)b → Is → 0,

for some b,
(c) ρ = 2 and n−1

σ2
+ 1 ≤ s, or ρ = 1 and n = 1, and

(d) a = 0.
(e) reg Is = sd.

Proof. We prove (3). The trick (6.5) shows that (a) and (b) are equivalent. The
parameter a is equal to the number of non-linear columns in the presenting matrix
for Is, so (d) and (b) are equivalent. The equivalence of (d) and (c) may be read
from Theorem 6.1. Assertions (1) and (2) show that (c) and (e) are equivalent. �

Let B be a standard graded algebra over a field and let qB(s) be the Hilbert
polynomial of B. It follows that qB(s) = λ(Bs) for all large s. The postulation
number of B is

p(B) = max{s | qB(s) 6= λ(Bs)}.
Corollary 6.9. If I is given in Definition 1.5, thenlast

p(F(I)) =

{
dn−1
σ2
e, if ρ = 2,

dn−1
σ1
e − 1, if ρ = 1.

Proof. The Hilbert function and the Hilbert polynomial of F(I) may be read from
Theorem 6.1: HF(I)(s) is equal to “b0”, written as a function of s and

qF(I)(s) =
{
sd+

(
a
2

)
σ1 − an+ a+ 1, if ρ = 1,

sd+ 1, if ρ = 2,

for a = dn−1
σ1
e. The calculation of p(F(I)) when ρ = 2 is explicitly given in

Corollary 6.8. A similar calculation is used when ρ = 1. �
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