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1. Introduction

Interior point methods are, put simply, a technique of optimization

where, given a problem with both equality and inequality constraints,

reduces the problem to a sequence of equality constrained problems.

One of these methods include barrier methods, in which a barrier func-

tion is considered. Intuitively, barrier methods convert a constrained

problem to an unconstrained problem by selecting a specially con-

structed function B(x) which has the property that B vanishes at the

constrained optimal value, and B(x) → ∞ as x tends to the bound-

ary of the feasible region. A sequence of equalities is then considered,

in which the limiting value converges to the optimal value of the con-

strained value.

In this paper we consider an approach known as the Primal-Dual

Method for Linear Programming problems. There is a Primal-Dual

method for nonlinear problems, but we shall only cover the case for

linear problems here.

2. Lagrangians and Dual Problems

The heart of optimization lies in problems of the following form:
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min f(x)

s.t gi(x) ≤ 0

hj(x) = 0

(2.1)

We refer to each gi as an inequality constraint, and each hj as an

equality constraint. We then form the Lagrangian Function for the

problem (2.1).

(2.2) L(x, µ, λ) = f(x)−
m∑
i=1

µigi(x)−
l∑

j=1

λjhj(x)

The constants µi and λj are referred to as our Lagrange multipli-

ers. In general, the Lagrangian is extremely important to the theory

of optimization. Another question can be asked, in which we consider

minimizing the Lagrangian with respect to our variable x. This cu-

riosity will lead us in the direction of formulating the Dual Problem.

Define:

(2.3) q(µ, λ) = inf
x
L(x, µ, λ)

We require that the infimum exists and is finite. We can refer to q

as the dual function, and it is easy to see that this provides a lower

bound on the solution of (2.1). Now, in order for the direction of

our inequality constraints to remain the same, it is essential that all

µi ≥ 0. This is essentially a constraint, and with this, we can introduce

the Dual Problem:

max q(µ, λ)

s.t µi ≥ 0
(2.4)



PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING 3

It is natural to consider the difference f(x)−q(µ, λ), which is referred

to as the duality gap. As x→ x∗, where x∗ denotes the solution of (2.1),

it can be shown that the duality gap will tend to 0. We are now in a

position to derive the Primal-Dual method.

3. Derivation of Primal-Dual Interior Point Method for

Linear case

Consider a linear programming problem of the following form:

min cTx

s.t Ax = b

x ≥ 0

(3.1)

Where b ∈ Rm, c ∈ Rn, and A ∈ Rm×n. We intend to construct the

dual problem for this problem, known as the primal problem. We thus

form the Lagrangian function:

(3.2) L(x, y, s) = cTx− yT (Ax− b) + sTx

Where y is the vector of our Lagrange multipliers corresponding to

the equality constraints, and s ≥ 0 is the vector of inequality constraint

multipliers. We now intend to rewrite (3.2) in order to deduce some

properties of our dual problem. We have:

L(x, y, s) = cTx− yT (Ax− b)− sTx

= cTx− yTAx+ yT b+ sTx

= yT b+ (−ATy + c− s)Tx
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Where the last step uses the fact that yTA = (ATy)T . Here is where

we use properties of linear functions and the assumption of our dual

function in the previous section. If we examine infx L(x, y, s), we see

that we are looking for infx(−ATy + c − s)Tx. However, we required

that the dual function be bounded below. It is obvious that a linear

function will be bounded below if and only if its slope is identically

0. Thus, we see that −ATy + c − s = 0. We have thus derived the

corresponding dual problem:

max bTy

s.t ATy + s = c

s ≥ 0

(3.3)

We can now consider a barrier reformulation of our linear problem,

which uses the fact that the solution set for (3.1) is precisely the same

as the following:

min cTx− µ
n∑
i=1

ln(xi)

s.t Ax = b

x ≥ 0

(3.4)

This is easy to see purely by the properties of barrier reformulations.

We see that as x tends to the boundary of our feasibly region, our

barrier function will tend to infinity, effectively forcing our problem

to remain constrained. If we consider the Lagrangian function for the

above barrier reformulation, we easily deduce the following system:
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5x L(x, y) = c− µX−1e− ATy = 0

5y L(x, y) = b− Ax = 0

x > 0

(3.5)

Where we let X denote the square matrix whose ith diagonal entry

is just the ith entry of x. This is where we can introduce a ”slack”

vector s = µX−1e, where e is an nx1 vector of 1’s, and reformulate

(3.5) in the following form:

ATy + s = c

Ax = b, x > 0

Xs = µe

(3.6)

We can then immediately formulate the dual barrier problem as so:

max bTy − µ
n∑
i=1

ln(si)

s.t ATy = s

s ≥ 0

(3.7)

Which yields the following system almost immediately after consid-

ering the Lagrangian:

ATy + s = c, s > 0

Ax = b,

Xs = µe

(3.8)

But then we immediately combine the conditions above from (3.4)

and (3.8) and derive the following conditions, which are essential to

constructing the Primal-Dual interior point method algorithm.
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ATy + s = c, s > 0

Ax = b, x > 0

Xs = µe

(3.9)

We now consider the system (3.9), and intend to apply Newton’s

method for multidimensional optimization. We assume the reader is

familiar with this method, and consider the following vector function

Fγ(x, y, s) which we have perturbed by a small arbitrary parameter γ:

(3.10) Fγ(x, y, s) =

 Ax− b
ATy + s− c
Xs− γµe


We now consider the gradient of our function. Each column repre-

sents the matrix derivative with respect to vectors x, y, and s, respec-

tively. We have:

(3.11) 5Fγ(x, y, s) =

A 0 0
0 AT I
S 0 X


Of course the search directions for Newton’s method are determined

by solving the system 5Fγ(x, y, s)D = −Fγ(x, y, s), where D is our

direction method. We then have:

(3.12)

A 0 0
0 AT I
S 0 X

dxdy
ds

 = −

 Ax− b
ATy + s− c
Xs− γµe


Now assume we are given initial iterates (x0, y0, s0) which satisfy x0,

s0 > 0. Then we can define the initial dual residuals as so:
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r0P = b− Ax0

r0D = c− ATy0 − s0
(3.13)

This then quickly generalizes to the following iteration scheme, where

(xk, yk, sk) is the kth iterate:

(3.14)

A 0 0
0 AT I
Sk 0 Xk

dxdy
ds

 =

 rkP
rkD

−Xks+ γµke


Of course we then require finding a step size for our next iterate.

There is no perfect step size, but the general method is to follow a cen-

tral path that converges to a solution. This is the biggest advantage of

interior point methods, which do not require explicit calculation of the

central path. Instead, we form a horn neighborhood, which is named

because of the shape of the neighborhood as it follows the central path.

See [1] for an explicit illustration. The horn neighborhood improves cal-

culation efficiency and speed because our iterates need only stay within

some distance of the central path, which tends to 0 as the method con-

verges. Intuitively, this will of course converge to the optimal point,

but with minimal computing power compared to explicit calculations

of the central path. See [1] for additional theoretical considerations on

this derivation.

4. The Primal-Dual Interior Point Algorithm: Simplified

Version for Linear Programming

There is a simplified algorithm for this method [1] which has the

following explicit form. This can be found by means of backward sub-

stitution in the system (3.12).
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(1) Initialization step: Choose β, γ ∈ (0, 1) and let ε > 0 be your

tolerance. Choose x0 = s0 = e and y0 = 0

(2) Set k=0

(3) We now begin the iteration scheme: Set:

rkP = b− Axk

rkD = c− ATyk − sk

µk =
(xk)T sk

n

(4) Check our termination: If ||rkP || < ε, ||rkD|| < ε, and (xk)T sk < ε,

then we stop.

(5) Compute our directions using the following:

(4.1) Mdy = r

where

M = A(Sk)−1XkAT

r = b+ A(Sk)−1(XkrkD − γµke)

We then find our other directions with the following:

(4.2) ds = rkD − ATdy

(4.3) dx = −xk + (Sk)−1(γµke−Xkds)

(6) We then calculate step size using the following:

(4.4) αmaxP = min

{
− xi

(dx)i
: (dx)i < 0, i ∈ I

}

(4.5) αmaxD min

{
− si

(ds)i
: (ds)i < 0, i ∈ I

}
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We then choose our value for αmax to be the minimum of (4.4)

and (4.5), and the value αk is then chosen as:

αk = min{1, θαmax

Where θ ∈ (0, 1). In practice we will often choose θ to be

close to 1. In our code we chose θ = .95.

(7) Update our iterates:

xk+1 = xk + αkdx

yk+1 = yk + αkdy

sk+1 = sk + αkds

(8) Repeat the algorithm, with k = k + 1.

In practice, the above algorithm is computationally efficient and

fairly open to adjustments. Indeed, changes to our starting points

may yield different paths to convergence, and changes to the constants

may affect the amount of iterations required for desired precision.

5. Numerical Tests and Implementation

We tested our code on various problems and obtained excellent re-

sults. On most problems, between 10 and 20 iterations are needed

when our ε is 10−8, which will be our standard tolerance, as explained

later. In these tests, we will encounter both minimum and maximum

problems. Out code is designed to minimize a given objective function,

but if we would maximize, then the algorithm simply multiplies all co-

efficients in the objective function by -1. Let’s look at the following

example.
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max 2x1 + 2x2

s.t. x1 + x2 ≤ 3

x1, x2 ≥ 0

(5.1)

This problem was solved just 8 iterations, with the optimal value found

to be 6 at (x1, x2) = (1.5, 1.5). In fact, there are infinitely many optimal

solutions lying on the line x1 +x2 = 3, however our method will always

return the analytic center in these cases. Our solution can be seen in

Figure 1.

Figure 1. Problem 5.1.

For a more interesting example, let’s look at the following.
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max 3x1 + 5x2

s.t.x1 ≤ 3

2x2 ≤ 12

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

(5.2)

Our algorithm solved this one in 11 iterations, with optimal value

36 found at (x1, x2) = (2, 6). If we change our initial point from

(1, 1, 1, 1, 1) to others, the algorithm still reaches the solution in about

11 iterations (occasionally 10 or 12). These can be seen in Figure 2.

Figure 2. Problem 5.2 using various initial points.

If we let ε be 10−32, then we obtain a solution that is within 9.8900443×

10−10 of the solution of 35.999999999010996 obtained when ε is the
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usual 10−8, and our algorithm takes 42 iterations. Thus, an increase in

ε is probably not worth the machine time unless accuracy is imperative.

Our algorithm does not just handle ≤ constraints, though. When the

constraint is =, our algorithm will not add a slack, and when it is ≥,

our algorithm will add a slack and set its coefficient in that constraint

to -1, instead of 1. For example, consider the following.

min 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4

x1 + 3x2 ≥ 20

x1 + x2 = 10

x1, x2 ≥ 0

(5.3)

In this problem, we have all three types of constraints. Our code finds

an optimal solution in just 15 iterations. See Figure 3.

Note that in this example, our set of feasible points is not a region, and

is instead a line segment, denoted by the thicker constraint line.
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Figure 3. Problem 5.3.

6. More Numerical Tests

We have chosen additional problems with various numbers of vari-

ables, and with different constraint types. Our tolerance in each is

10−8. Problems 5.1, 5.2, and 5.3 will be included as well.

(1)

max 2x1 + 2x2

s.t. x1 + x2 ≤ 3

x1, x2 ≥ 0

Iterations:

8

Optimal Solution:

x1 = 1.499999999576468.

x2 = 1.499999999576468.
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Optimal Value:

5.999999998305872.

(2)

max 3x1 + 5x2

s.t. x1 ≤ 3

2x2 ≤ 12

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

Iterations:

11

Optimal Solution:

x1 = 1.999999999944728.

x2 = 5.999999999834196.

Optimal Value:

35.99999999900516.

(3)

min 2x1 + 3x2

s.t. 0.5x1 + 0.25x2 ≤ 4

x1 + 3x2 ≥ 20

x1 + x2 = 10

x1, x2 ≥ 0

Iterations:

15

Optimal Solution:

5.000000000000392

4.999999999999693
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Optimal Value

25.000000000760810

(4)

max 2x1 + 7x2 + 6x3 + 4x4

s.t. x1 + x2 + 0.83x3 + 0.5x4 ≤ 65

1.2x1 + x2 + x3 + 1.2x4 ≤ 96

0.5x1 + 0.7x2 + 1.2x3 + 0.4x4 ≤ 80

x1, x2, x3, x4 ≥ 0

Iterations:

15

Optimal Solution:

x1 = 2.249787143151893e-10.

x2 = 5.16007534179303.

x3 = 53.20150657500549.

x4 = 31.36534840108348.

Optimal Value:

480.7909604473681.

(5)

max 2x1 − x2 + 2x3

s.t. 2x1 + x2 ≤ 10

x1 + 2x2 − 2x3 ≤ 20

x2 + 2x3 ≤ 5

x1, x2, x3 ≥ 0

Iterations:

15

Optimal Solution:
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x1 = 4.999999998963977.

x2 = 5.180121984762661e-10.

x3 = 2.499999998963975.

Optimal Value:

14.99999999533789.

(6)

min − 2x1 − 3x2 − 4x3

s.t. 3x1 + 2x2 + x3 = 10

2x1 + 5x2 + 3x3 = 15

x1, x2, x3 ≥ 0

Iterations:

10

Optimal Solution:

x1 = 2.142857142835484.

x2 = 1.516095219269412e-10.

x3 = 3.571428571190327.

Optimal Value:

-18.5714285708871.

Note that the number of iterations was never any more that 15,

and our accuracy was always within 10−9 of the actual solution. The

iterations seem to be higher when working with more variables (in

example 4, we use four variables and three slacks) and when there are

≥ constraints.

7. Conclusion

In conclusion, we see that interior point methods are computationally

efficient even with dealing with relatively large constraints. The theory
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behind them is based on the concept of Primal-Dual barrier reformu-

lations and uses a modified Newton’s method to stay sufficiently close

to the central path of convergence, as opposed to explicit calculation

of this central path, which is the reason this method is so successful.

Our numerical tests all converged successfully, and the code used was

extremely flexible in dealing with equality-inequality constraints.
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