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Introduction

The FORTRAN 90 code

hsynth_fast.f90

is developed for very fast and accurate evaluation of gravimetric quantities rep-
resented in high degree (> 2000) solid spherical or ellipsoidal harmonics at many
scattered points in the space exterior to surface of the Earth. The covered gravi-
metric quantities are:

• Disturbing potential T (in m2/s2);
• Height anomaly ζ (in meters);
• Gravity anomaly ∆g (in mGal);
• Gravity disturbance δg (in mGal);
• North-south deflection of the vertical ξ (in arcseconds);
• East-west deflection of the vertical η (in arcseconds);
• Second radial derivative of the disturbing potential Trr (in Eötvös Units).

The values of these quantities are derived from the official NGA Earth Gravitational
Model EGM2008 [3].

For the range from the surface of the Earth up to 544 kilometers above that
surface the current version of the software runs on a standard PC at speed between
20,000 and 40,000 point evaluations per second, depending on the gravimetric quan-
tity being evaluated, while the relative error does not exceed 10−6 and the memory
(RAM) use is 9.3 GB.

It should be pointed out that the coefficients of the spherical harmonics expan-
sions of T and ζ decrease at a moderate rate with the degree, while the spherical
harmonics expansion of Trr contains “large” high degree coefficients, which makes
Trr one of the most challenging quantity for fast evaluation. The gravity anomaly,
gravity disturbance and deflection of the vertical coefficients exhibit intermediate
behavior.

The algorithm for fast and accurate evaluation of gravimetric quantities pre-
sented here is based on the tensor product trigonometric needlets developed in [1].
A detailed description of this algorithm is given in Section 4 below.

It is a general requirement that the user run the software described in this manual
on a computer with at least 16 GB RAM.

In the following we provide a detailed description our algorithm, software, and
files with careful analysis of the accuracy, speed, and all related issues. The results
of several experiments are also given.
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1. Files in the package

The package hsynth_fast_f.zip contains all files necessary for the execution
of the code hsynth_fast.f90. These are the files:

• hsynth_fast.f90

• hsynth_standard.f90

• hsynth_init.f90

• hsynth.bat

• EGM2008_to2190_TideFree

• scattered_points1000.zip, scattered_points1000000.zip
• scattered_points_values1000.zip

• Manual_hsynth_fast.pdf

The file hsynth_fast.f90 contains the FORTRAN code of the main program.
In order to get executable files the user has to compile hsynth_init.f90 and
hsynth_fast.f90 codes on his/her computer. For every gravimetric quantity
using the EGM2008 coefficients given in EGM2008_to2190_TideFree the code
hsynth_init.f90 produces a binary data file values_*.bin (up to 9.3 GB, not in-
cluded in the package) with its weighted values at regular points located on several
confocal ellipsoids.

The code hsynth_fast.f90 uses as input files one of the data files
values_*.bin and the file scattered_points.dat, defined by the user. The
package contains two test files scattered_points.dat with 1,000 and 1,000,000
point coordinates, respectively, contained in scattered_points1000.zip,
scattered_points1000000.zip. The expected test results of the 1,000 point file
are collected in scattered_points_values1000.zip.

The purpose of the code hsynth_standard.f90 is to monitor the accuracy of the
performance and to be a benchmark for the speed of the code hsynth_fast.f90.
The code hsynth_standard.f90 uses the file scattered_points_values.dat as
an input file and evaluates the gravimetric quantities applying methods from
the “standard” NGA software on the base of the model coefficients included in
EGM2008_to2190_TideFree.

Manual_hsynth_fast.pdf is the current file.
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2. Input and output files

2.1. Free format ASCII input file. The user defined ASCII input file
scattered_points.dat contains the geocentric geographical spherical coordinates
of the scattered points, where the gravimetric quantity is to be evaluated. The file
has one record for every point. Each record contains the geocentric latitude and
the longitude in decimal degrees followed by the geocentric distance in meters of
the point.

(decimal degrees) (decimal degrees) (meters)

geocentric latitude longitude geocentric distance

These data are read using free FORMAT. Geocentric coordinates should refer to
the WGS84. The scattered points have to be located in the range from −125 meters
to 544, 000 meters above the Earth reference ellipsoid.

2.2. Free format ASCII output files. The file scattered_points_values.dat

is an ASCII output file containing the gravimetric quantity values at the scattered
points from the input. The file has one record for every point. Each record has 4 en-
tries: the WGS84 geocentric geographical latitude and longitude in decimal degrees,
the geocentric distance in meters, followed by the computed by hsynth_fast.f90

value at this point. This file serves as input for hsynth_standard.f90.
The ASCII output file scattered_points_values_standard.dat has the same

structure as scattered_points_values.dat, where the last entry of every record
is the value computed by hsynth_standard.f90 (instead of the value computed by
hsynth_fast.f90).

2.3. The EGM2008 coefficients input file. EGM2008_to2190_TideFree is the
standard EGM2008 coefficients file. It is required as input to hsynth_init.f90 and
hsynth_standard.f90. The file EGM2008_to2190_TideFree has been downloaded
from

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/

EGM2008_to2190_TideFree.gz.

2.4. Binary data files. The FORTRAN data files values_*.bin are not included
in the package. They are produced by hsynth_init.f90 in order to initialize
hsynth_fast.f90. Every file contains several records – one record for every confo-
cal ellipsoid used by the code (see §4.3). Every unformatted record contains double
precision numbers with little-endian byte ordering. These numbers are the weighted
values of the gravimetric quantity at regular points on the corresponding ellipsoid.

The binary data files are

• values_t_e_38.bin (9.2 GB, values of T );
• values_zeta_e_38.bin (9.2 GB, values of ζ);
• values_ddg_e_53.bin (9.0 GB, values of ∆g).
• values_dg_e_53.bin (9.0 GB, values of δg).
• values_xi_e_54.bin (9.1 GB, values of ξ);
• values_eta_e_55.bin (9.3 GB, values of η);
• values_trr_e_55.bin (9.3 GB, values of Trr).

Their names contain indication of the gravimetric quantity and the number of
confocal ellipsoids with regular grid points.
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3. How to run the software

To use the software described in this manual proceed as follows:

(1) Compile the codes hsynth_init.f90, hsynth_fast.f90 and
hsynth_standard.f90 using hsynth.bat.

(2) When any of the three executables is run it prompts you to select from
the keyboard the gravimetric quantity whose values you want to compute,
indicated by the case sensitive options:
• T for the disturbing potential;
• zeta for the height anomaly;
• Dg for the gravity anomaly;
• dg for the gravity disturbance;
• xi for the north-south deflection of the vertical;
• eta for the east-west deflection of the vertical;
• Trr for the second radial derivative of the disturbing potential.

The code hsynth_standard.exe accepts the additional option eta1 (see
§6).

(3) If the binary data file values_*.bin corresponding to the selected
gravimetric quantity does not exist, then generate it by running
hsynth_init.exe.

(4) Create a free format ASCII input file scattered_points.dat with the
coordinates of the scattered points, where the values of the selected by you
quantity are to be computed.

(5) Run hsynth_fast.exe with the created by you file scattered_points.dat
in order to obtain the ASCII output file scattered_points_values.dat

with quantity values. You may repeat many times the previous and the
current steps to evaluate the selected quantity on different sets of scattered
points without performing step 3.

(6) If you want to check the accuracy of hsynth_fast.exe, then run
hsynth_standard.exe on scattered_points_values.dat, which is the
output of hsynth_fast.exe.

Remarks:

• All data files are located in the executable files folder.
• Every data file values_*.bin is up to 9.3 GB.
• hsynth_init.exe works approximately 2 hours for xi or eta and 1 hour

for the other quantities! 1

• It is advisable to run hsynth_standard.exe on data file
scattered_points_values.dat with no more than 10,000 points
due to the low speed of the “standard” code (see the execution times as
reported by the tests in §7.2).
• The time for selecting a gravimetric quantity is not included in the reported
Total time.

1The execution times were measured on the computer configuration described in §7.
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4. Key components of the algorithm of code hsynth fast.f90

4.1. Gravimetric quantities represented in solid spherical harmonics.
In this subsection we describe in detail the gravimetric quantities that the code
hsynth_init.f90 is designed to evaluate. All of them are represented as a product
of a slowly varying function κ and a high degree harmonic expansion F (or a sum
of such products).

4.1.1. Disturbing potential. The disturbing potential T is represented in spherical
coordinates in EGM2008 by

T (r, θ, λ) =
GM

a

N∑
n=0

(a
r

)n+1 n∑
m=0

(c̃nm cosmλ+ s̃nm sinmλ)P̄nm(cos θ),

where GM is the gravitational constant of the earth, a is the Earth semi-major axis,
N = 2190, P̄nm are the fully-normalized associated Legendre functions and c̃nm,
s̃nm are the fully-normalized spherical harmonic coefficients of T . The coefficients
c̃nm, s̃nm are stored in EGM2008_to2190_TideFree for n ≥ 2 and c̃nm = s̃nm = 0
for n = 0, 1.

In this case the product representation takes the form

(1) T (r, θ, λ) = κ(r, θ)F (r, θ, λ), 0 ≤ θ ≤ π, 0 ≤ λ < 2π, r > 0,

where

(2) F (r, θ, λ) =

N∑
n=0

n∑
m=0

(a
r

)n+1

(cnm cosmλ+ snm sinmλ)P̄nm(cos θ),

(3) cnm =
GM

a
c̃nm, snm =

GM

a
s̃nm, κ(r, θ) = 1.

4.1.2. Height anomaly. The height anomaly ζ = T/γ with γ = γ(r, θ) being the
normal gravity has a representation similar to (1)–(3) with ζ instead of T in (1)
and κ(r, θ) = 1/γ(r, θ) in (3).

4.1.3. Gravity anomaly. The gravity anomaly ∆g = −∂T
∂r
− 2

r
T is represented just

as in (1)–(2) with ∆g instead of T in (1) and

(4) cnm =
GM

a2
(n− 1)c̃nm, snm =

GM

a2
(n− 1)s̃nm, κ(r, θ) =

a

r
.

4.1.4. Gravity disturbance. The gravity disturbance δg = −∂T
∂r

is represented just

as in (1)–(2) with δg instead of T in (1) and

(5) cnm =
GM

a2
(n+ 1)c̃nm, snm =

GM

a2
(n+ 1)s̃nm, κ(r, θ) =

a

r
.

4.1.5. Second radial derivative of the disturbing potential. The second radial deriv-

ative of the disturbing potential Trr =
∂2T

∂r2
is represented just as in (1)–(2) with

Trr instead of T in (1) and

(6) cnm =
GM

a3
(n+ 1)(n+ 2)c̃nm, snm =

GM

a3
(n+ 1)(n+ 2)s̃nm, κ(r, θ) =

a2

r2
.
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4.1.6. North-south deflection of the vertical. The spherically approximated north-

south deflection of the vertical ξ =
1

rγ

∂T

∂θ
has the representation

(7) ξ(r, θ, λ) = κ(r, θ) (F1(r, θ, λ) cosλ+ F2(r, θ, λ) sinλ) ,

where

(8) Fj(r, θ, λ) =

N∑
n=2

n∑
m=0

(a
r

)n+1 GM

a2
(cjnm cosmλ+ sjnm sinmλ)P̄nm(cos θ)

for j = 1, 2 and

(9) κ(r, θ) =
a

rγ(r, θ)
.

To obtain the coefficients cjnm, sjnm, j = 1, 2, we use the derivative representations√
1− x2 dP̄nm(x)

dx
=

√
(n−m)(n+m+ 1)

2
P̄n,m+1(x)

−
√

(1 + δ0,m−1)(n+m)(n−m+ 1)

2
P̄n,m−1(x), m ≥ 1;√

1− x2 dP̄n0(x)

dx
=

√
n(n+ 1)

2
P̄n,1(x), n ∈ N,(10)

where δk,` denotes the Kroneker symbol. These representations along with the
standard identities

cosmλ = cos(m± 1)λ cosλ± sin(m± 1)λ sinλ, m ∈ N ∪ {0};(11)

sinmλ = sin(m± 1)λ cosλ∓ cos(m± 1)λ sinλ, m ∈ N,(12)

lead to

(13) c1n,m =


1√
2

√
n(n+ 1)c̃n,1, for m = 0;

1
2

√
(n− 1)(n+ 2)c̃n,2 − 1√

2

√
n(n+ 1)c̃n,0, for m = 1;

1
2

√
(n−m)(n+m+ 1)c̃n,m+1

− 1
2

√
(n−m+ 1)(n+m)c̃n,m−1, for 2 ≤ m ≤ n;

(14) s1n,m =


0, for m = 0;
1
2

√
(n− 1)(n+ 2)s̃n,2, for m = 1;

1
2

√
(n−m)(n+m+ 1)s̃n,m+1

− 1
2

√
(n−m+ 1)(n+m)s̃n,m−1, for 2 ≤ m ≤ n;

(15) c2n,m =


1√
2

√
n(n+ 1)s̃n,1, for m = 0;

1
2

√
(n− 1)(n+ 2)s̃n,2, for m = 1;

1
2

√
(n−m)(n+m+ 1)s̃n,m+1

+ 1
2

√
(n−m+ 1)(n+m)s̃n,m−1, for 2 ≤ m ≤ n;

(16) s2n,m =


0, for m = 0;

− 1
2

√
(n− 1)(n+ 2)c̃n,2 − 1√

2

√
n(n+ 1)c̃n,0, for m = 1;

− 1
2

√
(n−m)(n+m+ 1)c̃n,m+1

− 1
2

√
(n−m+ 1)(n+m)c̃n,m−1, for 2 ≤ m ≤ n.
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The NGA codes utilize the derivative representation

(17) (1− x2)
dP̄nm(x)

dx
=

√
(n2 −m2)(2n+ 1)

2n− 1
P̄n−1,m(x)− nxP̄nm(x), n ∈ N,

which implies a representation of the deflection of the vertical in the form

(18) ξ(r, θ, λ) = κ(r, θ)
rF ?1 (r, θ, λ) + cos θF ?2 (r, θ, λ)

sin θ
,

where F ?1 , F
?
2 are certain harmonic expansions.

Observe that the singularity of ξ in representation (7) is contained only in the
two multipliers cosλ and sinλ, that is, (7) has better numerical stability near the
poles than (18), which has a sin θ term in the denominator. More precisely, our

algorithm produces an approximation ξ̃ to ξ, which obeys the same error all over
the ellipsoid as shown in Subsection 4.6. When the evaluation point coincides with
one of the poles (where ξ has a bounded discontinuity) then ξ̃ approximates the
latitude limit of ξ with the same precision as at the other points, i.e.

ξ̃(r, 0, λ) ≈ lim
θ→0

ξ(r, θ, λ)

=
GM√

2arγ(r, 0)

N∑
n=2

(a
r

)n+1√
n(n+ 1)(2n+ 1)[c̃n,1 cosλ+ s̃n,1 sinλ],

ξ̃(r, π, λ) ≈ lim
θ→π

ξ(r, θ, λ)

= − GM√
2arγ(r, π)

N∑
n=2

(
−a
r

)n+1√
n(n+ 1)(2n+ 1)[c̃n,1 cosλ+ s̃n,1 sinλ],

as the values of the limits follow from (7), (8), (9), (13), (15) with m = 0.

4.1.7. East-west deflection of the vertical. The spherically approximated east-west
deflection of the vertical

(19) η(r, θ, λ) = − 1

rγ(r, θ) sin θ

∂T

∂λ
(r, θ, λ)

=
GM

arγ(r, θ)

N∑
n=2

n∑
m=1

(a
r

)n+1

m
P̄nm(cos θ)

sin θ
[c̃n,m sinmλ− s̃n,m cosmλ]

has the representation

(20) η(r, θ, λ) = κ(r, θ) (F1(r, θ, λ) cosλ+ F2(r, θ, λ) sinλ)

with

(21) κ(r, θ) =
a2

r2γ(r, θ)
.

The functions Fj , j = 1, 2, are harmonic and have the representation

(22) Fj(r, θ, λ)

=

N−1∑
n=1

n∑
m=0

(a
r

)n+1 GM

2a2

√
2n+ 3

2n+ 1
(cjnm cosmλ+ sjnm sinmλ)P̄nm(cos θ),
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where coefficients cjn,m, sjn,m, j = 1, 2, are defined by

(23) c1n,m =


−
√

2(n+ 1)(n+ 2)s̃n+1,1, for m = 0;

−
√

(n+ 2)(n+ 3)s̃n+1,2, for m = 1;

−
√

(n+m+ 1)(n+m+ 2)s̃n+1,m+1

−
√

(n−m+ 1)(n−m+ 2)s̃n+1,m−1, for 2 ≤ m ≤ n;

(24) s1n,m =


0, for m = 0;√

(n+ 2)(n+ 3)c̃n+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)c̃n+1,m+1

+
√

(n−m+ 1)(n−m+ 2)c̃n+1,m−1, for 2 ≤ m ≤ n;

(25) c2n,m =


√

2(n+ 1)(n+ 2)c̃n+1,1, for m = 0;√
(n+ 2)(n+ 3)c̃n+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)c̃n+1,m+1

−
√

(n−m+ 1)(n−m+ 2)c̃n+1,m−1, for 2 ≤ m ≤ n;

(26) s2n,m =


0, for m = 0;√

(n+ 2)(n+ 3)s̃n+1,2, for m = 1;√
(n+m+ 1)(n+m+ 2)s̃n+1,m+1

−
√

(n−m+ 1)(n−m+ 2)s̃n+1,m−1, for 2 ≤ m ≤ n.

Representation (20)–(26) is obtained by replacing

(27) m
P̄nm(x)√

1− x2
=

1

2

√
2n+ 1

2n− 1

√
(n−m− 1)(n−m)P̄n−1,m+1(x)

+
1

2

√
2n+ 1

2n− 1

√
(1 + δ0,m−1)(n+m− 1)(n+m)P̄n−1,m−1(x), 1 ≤ m ≤ n.

with x = cos θ in (20) and applying identities (11)–(12).
Representation (20) shows that η has bounded discontinuities at the poles. The

main disadvantage of representation (19) (compared to (20)) is the sin θ term in
the denominator, which generates computational instability around the poles. Our
code gives an approximation η̃ to η, which obeys the same error bound all over
the ellipsoid as shown in Subsection 4.6. When the evaluation point coincides with
one of the poles (where η has a bounded discontinuity) then η̃ approximates the
latitude limit of η with the same precision, i.e.

η̃(r, 0, λ) ≈ lim
θ→0

η(r, θ, λ)

=
GM√

2arγ(r, 0)

N∑
n=2

(a
r

)n+1√
n(n+ 1)(2n+ 1)[c̃n,1 sinλ− s̃n,1 cosλ],

η̃(r, π, λ) ≈ lim
θ→π

η(r, θ, λ)

=
GM√

2arγ(r, π)

N∑
n=2

(
−a
r

)n+1√
n(n+ 1)(2n+ 1)[c̃n,1 sinλ− s̃n,1 cosλ],

as the values of the limits follow from (20), (21), (22), (23), (25) with m = 0.
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4.2. From spherical harmonics to ellipsoidal harmonics. Our next step is
to represent the harmonic function F (r, θ, λ) (or F1, F2) in ellipsoidal coordinates
(u, ϕ, λ), where ϕ is the complement of the reduced latitude and u is the semi-
minor axis of the confocal ellipsoid. These coordinates are related to the spherical
coordinates (r, θ, λ) by r sin θ cosλ =

√
u2 + E2 sinϕ cosλ,

r sin θ sinλ =
√
u2 + E2 sinϕ sinλ,

r cos θ = u cosϕ.

Applying Jekeli’s transformation [2] we transform the coefficients

cnm, snm, 0 ≤ m ≤ n, 2 ≤ n ≤ N, to c{ell}n,m , s{ell}n,m , 0 ≤ m ≤ n, 2 ≤ n ≤ N1,

so that

(28) F (r, θ, λ) = H(u, ϕ, λ).

The harmonic expansion of H(u, ϕ, λ) takes the form

(29) H(u, ϕ, λ) =

N1∑
n=2

n∑
m=0

S̄n,m
(
u
E

)
S̄n,m

(
b
E

) (c{ell}nm cosmλ+ s{ell}nm sinmλ
)
P̄nm(cosϕ),

where S̄n,m are Jekeli’s functions and b is the Earth semi-minor axis. In theory
N1 =∞ but in practice N1 = N + 70 gives (28) with relative error less than 10−20.

For every fixed u the function H(u, ϕ, λ) (or H1(u, ϕ, λ) cosλ+H2(u, ϕ, λ) sinλ)
is a bi-variate trigonometric polynomial of degree N1 (or N1+1) and tensor product
needlets can be utilized for its fast evaluation (see Subsections 4.4-4.5). The reason
for switching from spherical harmonic expansions to ellipsoidal harmonic expansions
is to guarantee smaller approximation error as explained in Subsection 4.6.3.

4.3. Evaluation of gravimetric quantities in an ellipsoidal shell. The code
hsynth_fast.f90 computes an approximation G̃(u, ϕ, λ) to the gravimetric quan-
tity G(u, ϕ, λ), G = T, ζ,∆g, δg, ξ, η, Trr, for u from the ellipsoidal shell

U0 ≤ u ≤ U1 with U0 = b− 125 m and U1 = b+ 544, 000 m.

This approximation is obtained by interpolating the values of G on several confocal
ellipsoids. For a fixed (ϕ, λ) ∈ S2 if G̃(u, ϕ, λ) is the Lagrange interpolant of
G(u, ϕ, λ) at the points uj = u1 + (j − 1)h, j = 1, 2, . . . , 2J , then the error takes
the form

G̃(u, ϕ, λ)−G(u, ϕ, λ) =
(u− u1) . . . (u− u2J)

(2J)!

∂2JG

∂u2J
(z, ϕ, λ)

for some z ∈ (u1, u2J). The best choice for u is u ∈ [uJ , uJ+1], where the product
(u− u1) . . . (u− u2J) has a ch2J bound with the smallest constant c. However, the
2J-th derivative of G with respect to u grows very rapidly as u approaches b (i.e.
the Earth surface), which leads to a big error!

In order to reduce the influence of the derivative term on the error we take an
increasing function µ defined on [0, s∗] such that µ(0) = U0, µ′(0) = 0, µ(s̄) = U1

for some 0 < s̄ < s∗ and set

g(s, ϕ, λ) = G(µ(s), ϕ, λ), (ϕ, λ) ∈ S2, 0 ≤ s ≤ s∗.
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Possible choices for µ are

µ(s) = U0 +
U1 − U0

1− cos s̄
(1− cos s); µ(s) = U0 +

U1 − U0

s̄2
s2; µ(s) = U0 +

U1 − U0

s̄4
s4;

as the last one is used in the codes hsynth init and hsynth fast. They give
us functions g with essentially smaller oscillation of the “radial” derivatives than
those of G and at the same time these derivatives of g can be explicitly expressed
in terms of the “radial” derivatives of G.

In the code we use 2J point Lagrange interpolation for G, where J = 3 for
G = T, ζ; J = 4 for G = ∆g, δg, ξ, η and J = 5 for G = Trr. Thus setting sj = jh,
j = −J + 1,−J + 2, . . . ,M with µ(sM−J−1) ≤ U1 ≤ µ(sM−J) we pre-compute
the values of G(vj , ϕk, λ`) at regular points (ϕk, λ`) ∈ S2 (see §4.4) on confocal

ellipsoids of semi-minor axis vj = µ(sj). Then for the computation of G̃(u, ϕ, λ) we
utilize this algorithm:

(1) For u ∈ [U0, U1] find s = µ−1(u) and j ≥ 0 such that s ∈ [sj , sj+1], where
µ−1 denotes the inverse function of µ;

(2) Use tensor product needlets (see §4.5) to compute g̃(si, ϕ, λ) := G̃(vi, ϕ, λ),
i = j−J + 1, j−J + 2, . . . , j+J from the values of G at the regular points
from each of these 2J ellipsoids;

(3) Use Lagrange interpolation to compute G̃(u, ϕ, λ) := g̃(s, ϕ, λ) from
g̃(si, ϕ, λ), i = j − J + 1, j − J + 2, . . . , j + J .

Note that the choice of µ as an even function gives v−1 = v1, v−2 = v2, etc., which

allows to only use values of G̃(vj , ϕ, λ) at points with vj ≥ U0 in the computation

of G̃(u, ϕ, λ)! Thus we avoid derivatives of G at points with coordinate u smaller
than U0. The choice U0 = b − 125 m allows to include in the ellipsoidal shell all
points above the geoid.

Note that the above computational scheme represents for fixed ϕ, λ an interpola-
tion of G(u, ϕ, λ) at the non-equally spaced points vj by a 2J−1 degree polynomial
of µ−1(u).

The binary file values_*.bin contains the values of G(vj , ϕk, λ`)
2

KL
, j =

0, 1, . . . ,M , k = 0, 1, . . . ,K, ` = 0, 1, . . . , L − 1. For K and L see Subsection 4.4
and (30).

4.4. Regular grid. The regular grids on the sphere are given in spherical coordi-
nates by

X = {xk,` = (θk, λ`) : k = 0, 1, . . . ,K, ` = 0, 1, . . . , L− 1},

where

θk =
πk

K
, k = 0, 1, . . . ,K; λ` =

2π`

L
, ` = 0, 1, . . . , L− 1.

Here L must be even in order to allow the values of the same grid to be used for
continuation through the poles. In the applications we usually takes L = 2K.

The regular grids on an ellipsoid are defined by the same formulas with θ replaced
by ϕ, where (ϕ, λ) denotes the ellipsoidal coordinates. Note, that for fixed θ and
λ the set {(r, θ, λ) : r > 0} is a half-line in spherical coordinates, while for fixed ϕ
and λ the set {(u, ϕ, λ) : u > 0} is part of a hyperbola in ellipsoidal coordinates.
This hyperbola reduces to a half-line only in the partial cases ϕ = 0, π/2, π.
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4.5. Evaluation of bi-variate trigonometric polynomials. As shown in §4.1–
4.2 the restrictions of any of the quantities f = G/κ, G = T, ζ,∆g, δg, ξ, η, Trr, on
any ellipsoid confocal with the Earth reference ellipsoid is a bi-variate trigonometric
polynomial in ϕ and λ of degree at most N1 + 1. Similarly, the restrictions of
f on any sphere centred at the centre of the Earth is a bi-variate trigonometric
polynomial in θ and λ of degree at most N .

The bi-variate trigonometric polynomial f(ϕ, λ) is evaluated at a point (ϕ, λ) ∈
S2 by tensor product trigonometric needlets of the form

(30) f̃(ϕ, λ) =
∑

|ϕ−ϕk|≤δ1

∑
|λ−λ`|≤δ2

K1(ϕ− ϕk)K2(λ− λ`)
2

KL
f(ϕk, λ`),

where K1 and K2 are trigonometric needlet kernels in ϕ and λ, respectively.
The number of knots {ϕk} on the interval [ϕ − δ1, ϕ + δ1] and the number of

knots {λ`} on the interval [λ − δ2, λ + δ2] ranges from 26 to 32 (depending on f)
for targeted accuracy ParKer(3)= 2× 10−7.

In (30) for λ close to 0 or to 2π we assume that the definition of λ` from §4.4
is extended by the same formula for ` < 0 or ` ≥ L, which implies the periodic
extension f(ϕ, λ+ 2π) = f(ϕ, λ) of f . Similarly, for θ close to 0 or to π we extend
the definition of θk from §4.4 by the same formula for k < 0 or k > K, which implies
the even semi-periodic extension f(−ϕ, λ+ π) = f(ϕ, λ) in the case of T, ζ,∆g, δg
or Trr, and the odd semi-periodic extension f(−ϕ, λ + π) = −f(ϕ, λ) in the case
of ξ or η. These extensions do not require evaluation of the polynomial f at new
points (ϕk, λ`) whenever L is even!

We refer the reader to [1] for more details on tensor product trigonometric
needlets.

4.6. Accuracy.

4.6.1. Relative error. For a gravimetric quantity G, G being T , ζ, ∆g, δg, ξ, η or
Trr, denote by

N (G,E, u) = max
(ϕ,λ)∈S2

|G(u, ϕ, λ)|

its norm on an ellipsoid with semi-minor axis u confocal to the Earth reference
ellipsoid. Here u, ϕ, λ stand for the ellipsoidal coordinates.

For a point P with spherical coordinates (rP , θP , λP ) and ellipsoidal coordinates
(uP , ϕP , λP ), U0 ≤ uP ≤ U1, (ϕP , λP ) ∈ S2, the code hsynth_fast.f90 gives

an approximation G̃(uP , ϕP , λP ) to the gravimetric quantity G(uP , ϕP , λP ) with
relative error 10−6, i.e.

(31) max
(ϕP ,λP )∈S2,
U0≤uP≤U1

|G̃(uP , ϕP , λP )−G(uP , ϕP , λP )|
N (G,E, uP )

≤ 10−6.

Note that (31) holds even when G denotes ξ or η, which are bounded discontinuous
functions at the poles.

The relative precision 10−6 in (31) is selected to be better than the relative
accuracy of the model EGM2008 itself. When the relative accuracy of the gravi-
metric model is improved then our codes can be easily modified to work with higher
accuracy.



13

Table 1 illustrates the dependance of the norms N (G,E, u) on the ellipsoid semi-
minor axis. Notice the modest decrease of the norms of T and ζ, the faster decrease
of the norms of ∆g, δg, ξ and η and the very fast decrease of the norms of Trr.
The decreasing of N (G,E, uP ) results in smaller absolute error in (31) when uP
increases.

The entries in Table 1 are obtained by subroutine norms_e in
hsynth_standard.f90. This subroutine can be used for determining the
norms for other values of uP as well.

Height h km 0 100 200 300 400 500
N (T,E, b+ h) m2/s2 1041.54 945.64 873.39 811.31 755.93 706.09
N (ζ,E, b+ h) m 106.49 99.75 95.01 90.97 87.33 84.01
N (∆g,E, b+ h) mGal 989.20 87.39 50.94 35.95 31.40 27.79
N (δg,E, b+ h) mGal 993.45 102.67 68.51 59.96 53.48 48.14
N (ξ,E, b+ h) arcsec. 126.78 21.72 11.63 7.52 5.87 5.41
N (η,E, b+ h) arcsec. 94.77 15.70 9.95 8.45 7.63 7.09
N (Trr,E, b+ h) Eötvös 1296.45 10.49 2.39 1.29 0.81 0.55

Table 1. The norms N (G,E, b + h) on the ellipsoids with semi-
minor axis b+ h for several heights h.

4.6.2. Absolute error. In some instances it is useful to know how the bound 10−6 on
the relative error translates into absolute error for various gravimetric quantities at
various heights h above the surface of the earth (geoid). The accuracy in absolute
units for each of the gravimetric quantities T , ζ, ∆g, δg, ξ, η, and Trr is given in
the next table.

h km 0 20 100 200 500

T m2/s2 1.0×10−3 1.0×10−3 9.5×10−4 8.7×10−4 7.1×10−4

ζ m 1.1×10−4 1.0×10−4 1.0×10−4 9.5×10−5 8.4×10−5

∆g mGal 9.9×10−4 3.4×10−4 8.7×10−5 5.1×10−5 2.8×10−5

δg mGal 9.9×10−4 3.5×10−4 1.0×10−4 6.9×10−5 4.8×10−5

ξ arcsec. 1.3×10−4 5.2×10−5 2.2×10−5 1.2×10−5 5.4×10−6

η arcsec. 8.6×10−5 4.1×10−5 1.4×10−5 9.6×10−6 7.1×10−6

Trr Eötvös 1.3×10−3 1.3×10−4 1.0×10−5 2.4×10−6 5.5×10−7

Table 2. Evaluation accuracy as an absolute error bound

4.6.3. Norms on ellipsoids versus norms on spheres. One may avoid the use of
ellipsoidal coordinates as described in §4.2 and work only in spherical coordinates.
Then the target error estimate would be

(32) max
(θP ,λP )∈S2,
U0≤uP≤U1

|G̃(rP , θP , λP )−G(rP , θP , λP )|
N (G,S2, rP )

≤ 10−6,
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where (rP , θP , λP ) and (uP , ϕP , λP ) denote the spherical and the ellipsoidal coor-
dinates of a point P , respectively, and

N (G,S2, r) = max
(ϕ,λ)∈S2

|G(r, θ, λ)|

denotes the norm of G on the sphere of radius r.

Figure 1. Point P above the Earth reference ellipsoid (black)
congruent to a confocal ellipsoid (blue) and to a sphere (red). Parts
of the sphere (dotted red) may pass inside the reference ellipsoid.

The main drawback of an error estimate as in (32) is the very high oscillation of
G in the domain under the surface of the Earth (see dotted red curves in Figure 1),
i.e. whenever b ≤ rP ≤ a, b ≤ uP . This would lead to the use of larger size of
RAM because more concentric spheres will be needed to get (32) compared with
the number of confocal ellipsoids necessary for (31).

G \ ϕP π/2 5π/12 π/3 π/4 π/6 π/12 0
ζ 1.00 1.00 1.00 1.01 1.43 3.03 4.45
∆g 0.93 1.07 1.75 5.70 26.32 83.74 129.19
ξ 0.77 0.90 1.61 6.24 29.25 94.73 146.31
η 0.86 1.00 2.22 9.19 40.64 130.28 202.19
Trr 0.68 0.94 2.59 12.07 58.86 191.90 296.94

Table 3. The ratio of the norms N (G,S2, rP )/N (G,E, b) for
points P on the reference ellipsoid with ellipsoidal coordinates
(b, ϕP , λP ) and spherical coordinates (rP , θP , λP ). The entries for
T and δg are not reported because they are very close to the entries
for ζ and ∆g, respectively.

Another advantage of the ellipsoidal coordinates here is the fact that
N (G,S2, rP ) could be essentially larger than N (G,E, uP ) when the point P is
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G \ ϕP π/2 5π/12 π/3 π/4 π/6 π/12 0
ζ 1.00 1.00 1.00 1.01 1.01 1.02 1.02
∆g 0.93 0.97 1.14 1.47 1.99 2.70 3.10
ξ 0.92 0.94 1.01 1.13 1.33 1.85 2.18
η 0.97 1.00 1.12 1.33 1.61 1.96 2.29
Trr 0.96 1.04 1.34 2.03 3.64 6.81 9.35

Table 4. The ratio of the normsN (G,S2, rP )/N (G,E, b+20, 000)
for points P 20 km above the reference ellipsoid with ellip-
soidal coordinates (b + 20, 000, ϕP , λP ) and spherical coordinates
(rP , θP , λP ). The entries for T and δg are not reported because
they are very close to the entries for ζ and ∆g, respectively.

away from the equator as Table 3 shows. This means that estimate (32) could be
a lot less precise than estimate (31). Of course, if the point is at the equator, then
the inequality is reversed but the two norms N (G,E, uP ) and N (G,S2, rP ) remain
close to each other in this case. Table 3 also shows that the disadvantage of (32)
over (31) on the reference ellipsoid is a lot stronger for ∆g, δg, ξ, η and Trr than
for ζ and T .

The two estimates (31) and (32) become closer with the increase of the point
height above the reference ellipsoid. As Table 4 shows the discrepancies at height
20 km for ∆g, δg, ξ, η and Trr still exist but they have smaller magnitude, while
the discrepancies for ζ and T are practically negligible.
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5. The code hsynth init.f90

The code hsynth_init.f90 is an auxiliary program design to produce the binary
data files values_*.bin listed in §2.4, which are not included in the package because
of their 9.3 GB sizes. These files are necessary to initialize hsynth_fast.f90.

The code computes the gravimetric quantity values at regular points lo-
cated on confocal ellipsoids from the standard EGM2008 coefficients file
EGM2008_to2190_TideFree. The “standard” NGA method for evaluating sur-
face spherical harmonic gridded values is applied. The coefficients of the ellip-
soidal harmonic expansions are obtained via Jekeli’s transformation from the co-
efficients of the spherical harmonic expansions (see Subsection 4.2), which in turn
are derived as explained in Section 4.1 from the EGM2008 coefficients given in file
EGM2008_to2190_TideFree. The number of confocal ellipsoids is chosen to cover
the range [U0, U1] with step h, which in turn depends on the evaluated gravimetric
quantity as explained in Subsection 4.3.

The number of regular grid points located on an ellipsoid is: 4015× 8028 for T
and ζ (2.69′ × 2.69′ grid); 3346× 6690 for ∆g, δg, ξ, η and Trr (3.23′ × 3.23′ grid).
The grid is further extended as explain in §4.4 and §4.5. The number of confocal
ellipsoids used by the code is 38 for T and ζ, 53 for ∆g and δg, 54 for ξ, 55 for η
and Trr.

The precomputed values are not included in the package because of their 9.3 GB
sizes. On the computer where the tests were performed it takes approximately 54
minutes to run the code for T or ζ, 1 hour for ∆g, δg or Trr and 2 hours for ξ or η.
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6. The code hsynth standard.f90

The purpose of the code hsynth_standard.f90 is to test the accuracy of the
main code hsynth_fast.f90 and to be used as a benchmark for its speed.

The code hsynth_standard.f90 evaluates the gravimetric quantities using the
“standard” method of the NGA software on the base of the EGM2008 coefficients.
Only the north-south and easth-westh deflections of the vertical ξ and η are com-
puted by a different methods, which are more stable. The evaluations are done in
spherical coordinates without passing to ellipsoidal coordinates as in the other two
codes.

The model coefficients are read from EGM2008_to2190_TideFree. The file
scattered_points_values.dat, which is the output of hsynth_fast.f90, is also
used as an input file for the testing program.

Among the displayed program statistics one can find the maximal relative error
(31) of the gravimetric quantity computed by hsynth_fast.f90. The speed of
our realization of the two methods can be compared using the reported numbers
“Values per second”. In both programs these numbers are formed on the base of
pure computational time, ignoring the time necessary to read the input or to write
the output.

Two options are provided in the code for evaluating the east-west deflection of
the vertical η. The option eta implements representation (20)–(26) and is used
to measure the accuracy of hsynth_fast.exe, while the option eta1 implements
representation (19) and could be used to compare the computational speed. The
option eta1 follows the method of the “standard” NGA software, which is two
times faster than the method used in option eta but tends to lose precision near
the poles due to division by sin θ.

As the speed of the method of the “standard” NGA software is approximately
46 values per second for T , ζ, ∆g, δg and Trr or 23 values per second for ξ and η
it is not advisable to run this code with more than 10, 000 points!



18

7. Experiments

The software has been extensively tested on a 2.4 GHz PC, CPU Intel Core i7
with 16 GB of RAM and 250 GB SSD. The Solid-State Disk is used to store
the binary data files values_*.bin, the input file scattered_points.dat and
the output file scattered_points_values.dat. Program hsynth_fast.f90 uses
11 GB of RAM.

7.1. The test files. The test input file scattered_points.dat consists of the ge-
ographical geocentric spherical coordinates of 1,000 (or 1,000,000) points, obtained
from their ellipsoidal coordinates, such that the latitude, the longitude and the
semi-minor axis are randomly distributed in [−90, 90], [0, 360) and [U0, U1], respec-
tively. Here U0 = b − 125 m, U1 = b + 544, 000 m and b is the Earth semi-minor
axis, b ≈ 6, 356, 752 m. The first three points from the file are modified to be at the
North pole, at the South pole and at the Equator of the Earth reference ellipsoid.

7.2. Tests. The codes are run under GNU FORTRAN compiled with GCC v.4.9.2
with -mcmodel=medium and -O3 options in Windows 10 terminal.

The testing statistics of program hsynth_fast.exe for the test input
files scattered_points.dat with 1,000,000 and 1,000 points and of program
hsynth_standard.exe with 1,000 points follow for different gravimetric quantities.
For the east-west deflection of the vertical η the statistics of hsynth_standard.exe
for option eta1 are also included.
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7.2.1. The disturbing potential T .

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: disturbing potential T in m^2/s^2

Total time = 78.29099 CPU seconds

Grid values load time = 30.34288 CPU seconds

Coordinates load time = 6.25691 CPU seconds

Synthesis time = 24.45910 CPU seconds

Values write time = 13.29679 CPU seconds

Semi-length of supports = 13; 13

Total number of points = 1000000

Values per second = 40884.57727

---------------------------------------------------------------

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: disturbing potential T in m^2/s^2

Total time = 34.43972 CPU seconds

Grid values load time = 30.66280 CPU seconds

Coordinates load time = 0.02949 CPU seconds

Synthesis time = 0.02914 CPU seconds

Values write time = 0.01431 CPU seconds

Semi-length of supports = 13; 13

Total number of points = 1000

Values per second = 34312.76138

---------------------------------------------------------------

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: disturbing potential T in m^2/s^2

Total time = 33.04112 CPU seconds

Model load time = 11.35298 CPU seconds

Coefficient formation time = 0.16091 CPU seconds

Coordinates load time = 0.00900 CPU seconds

Synthesis time = 21.50353 CPU seconds

Values write time = 0.01462 CPU seconds

Total number of points = 1000

Execution time per point = 0.02150 CPU seconds

Values per second = 46.50398

Maximal relative error = 0.4144485E-07

Geocentric coordinates of the maximal error:

( 5.46826406, 79.58292965, 6497932.9395)

---------------------------------------------------------------
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7.2.2. The height anomaly ζ.

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: height anomaly in meters

Total time = 78.46042 CPU seconds

Grid values load time = 30.52104 CPU seconds

Coordinates load time = 6.18772 CPU seconds

Synthesis time = 24.58356 CPU seconds

Values write time = 13.18387 CPU seconds

Semi-length of supports = 13; 13

Total number of points = 1000000

Values per second = 40677.58347

---------------------------------------------------------------

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: height anomaly in meters

Total time = 34.52072 CPU seconds

Grid values load time = 30.33005 CPU seconds

Coordinates load time = 0.03029 CPU seconds

Synthesis time = 0.03529 CPU seconds

Values write time = 0.01439 CPU seconds

Semi-length of supports = 13; 13

Total number of points = 1000

Values per second = 28335.56291

---------------------------------------------------------------

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: height anomaly in meters

Total time = 33.04321 CPU seconds

Model load time = 11.31501 CPU seconds

Coefficient formation time = 0.14015 CPU seconds

Coordinates load time = 0.00878 CPU seconds

Synthesis time = 21.56465 CPU seconds

Values write time = 0.01455 CPU seconds

Total number of points = 1000

Execution time per point = 0.02156 CPU seconds

Values per second = 46.37219

Maximal relative error = 0.4098860E-07

Geocentric coordinates of the maximal error:

( 5.46826406, 79.58292965, 6497932.9395)

---------------------------------------------------------------
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7.2.3. The gravity anomaly ∆g.

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: gravity anomaly Dg in mGal

Total time = 93.76596 CPU seconds

Grid values load time = 29.97501 CPU seconds

Coordinates load time = 6.38973 CPU seconds

Synthesis time = 40.45838 CPU seconds

Values write time = 13.22747 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000000

Values per second = 24716.75538

---------------------------------------------------------------

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: gravity anomaly Dg in mGal

Total time = 33.32451 CPU seconds

Grid values load time = 29.48255 CPU seconds

Coordinates load time = 0.01938 CPU seconds

Synthesis time = 0.04338 CPU seconds

Values write time = 0.01393 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000

Values per second = 23050.41943

---------------------------------------------------------------

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: gravity anomaly Dg in mGal

Total time = 33.64376 CPU seconds

Model load time = 11.57636 CPU seconds

Coefficient formation time = 0.35760 CPU seconds

Coordinates load time = 0.00868 CPU seconds

Synthesis time = 21.68656 CPU seconds

Values write time = 0.01449 CPU seconds

Total number of points = 1000

Execution time per point = 0.02169 CPU seconds

Values per second = 46.11151

Maximal relative error = 0.5255340E-07

Geocentric coordinates of the maximal error:

( -16.85575013, 292.39107577, 6632672.5475)

---------------------------------------------------------------
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7.2.4. The gravity disturbance δg.

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: gravity disturbance dg in mGal

Total time = 93.91593 CPU seconds

Grid values load time = 29.80503 CPU seconds

Coordinates load time = 6.43476 CPU seconds

Synthesis time = 40.79958 CPU seconds

Values write time = 13.23632 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000000

Values per second = 24510.05707

---------------------------------------------------------------

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: gravity disturbance dg in mGal

Total time = 33.97065 CPU seconds

Grid values load time = 30.30102 CPU seconds

Coordinates load time = 0.02210 CPU seconds

Synthesis time = 0.04532 CPU seconds

Values write time = 0.01492 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000

Values per second = 22066.81079

---------------------------------------------------------------

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: gravity disturbance dg in mGal

Total time = 33.57853 CPU seconds

Model load time = 11.55973 CPU seconds

Coefficient formation time = 0.35318 CPU seconds

Coordinates load time = 0.00872 CPU seconds

Synthesis time = 21.64259 CPU seconds

Values write time = 0.01425 CPU seconds

Total number of points = 1000

Execution time per point = 0.02164 CPU seconds

Values per second = 46.20520

Maximal relative error = 0.4633827E-07

Geocentric coordinates of the maximal error:

( 6.06207401, 75.35419746, 6498618.3602)

---------------------------------------------------------------
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7.2.5. The north-south deflection of the vertical ξ.

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: north-south vertical deflection in arcseconds

Total time = 93.59642 CPU seconds

Grid values load time = 30.07957 CPU seconds

Coordinates load time = 6.23561 CPU seconds

Synthesis time = 40.27181 CPU seconds

Values write time = 13.20634 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000000

Values per second = 24831.26635

---------------------------------------------------------------

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: north-south vertical deflection in arcseconds

Total time = 34.46133 CPU seconds

Grid values load time = 30.58784 CPU seconds

Coordinates load time = 0.02337 CPU seconds

Synthesis time = 0.04879 CPU seconds

Values write time = 0.01440 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000

Values per second = 20495.92869

---------------------------------------------------------------

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: north-south vertical deflection in arcseconds

Total time = 54.52510 CPU seconds

Model load time = 11.26231 CPU seconds

Coefficient formation time = 0.36457 CPU seconds

Coordinates load time = 0.00860 CPU seconds

Synthesis time = 42.87533 CPU seconds

Values write time = 0.01423 CPU seconds

Total number of points = 1000

Execution time per point = 0.04288 CPU seconds

Values per second = 23.32343

Maximal relative error = 0.6371636E-07

Geocentric coordinates of the maximal error:

( -15.51338799, 75.26156371, 6902930.3459)

---------------------------------------------------------------
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7.2.6. The east-west vertical deflection η.

Option eta

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: east-west vertical deflection in arcseconds

Total time = 95.46257 CPU seconds

Grid values load time = 31.29893 CPU seconds

Coordinates load time = 6.41526 CPU seconds

Synthesis time = 40.50132 CPU seconds

Values write time = 13.24499 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000000

Values per second = 24690.55506

------------------------------------------------------------------------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: east-west vertical deflection in arcseconds

Total time = 34.90200 CPU seconds

Grid values load time = 30.90171 CPU seconds

Coordinates load time = 0.02490 CPU seconds

Synthesis time = 0.05039 CPU seconds

Values write time = 0.01427 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000

Values per second = 19845.94759

------------------------------------------------------------------------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: east-west vertical deflection in arcseconds

Total time = 54.91672 CPU seconds

Model load time = 11.55685 CPU seconds

Coefficient formation time = 0.38586 CPU seconds

Coordinates load time = 0.00877 CPU seconds

Synthesis time = 42.95107 CPU seconds

Values write time = 0.01411 CPU seconds

Total number of points = 1000

Execution time per point = 0.04295 CPU seconds

Values per second = 23.28231

Maximal relative error = 0.5907279E-07

Geocentric coordinates of the maximal error:

( 55.51261069, 303.36387932, 6681813.8032)

---------------------------------------------------------------
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Option eta1

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: east-west vertical deflection in arcseconds

Total time = 33.16066 CPU seconds

Model load time = 11.40941 CPU seconds

Coefficient formation time = 0.14106 CPU seconds

Coordinates load time = 0.00873 CPU seconds

Synthesis time = 21.58586 CPU seconds

Values write time = 0.01548 CPU seconds

Total number of points = 1000

Execution time per point = 0.02159 CPU seconds

Values per second = 46.32661

Maximal relative error = 0.5973175E-07

Geocentric coordinates of the maximal error:

( 0.69906096, 88.11711514, 6675337.1589)

---------------------------------------------------------------
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7.2.7. The second radial derivative of the disturbing potential Trr.

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: second radial derivative of T in Eotvos Units

Total time = 104.01463 CPU seconds

Grid values load time = 30.60787 CPU seconds

Coordinates load time = 6.19974 CPU seconds

Synthesis time = 50.20390 CPU seconds

Values write time = 13.17706 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000000

Values per second = 19918.77257

---------------------------------------------------------------

---------------------------------------------------------------

program hsynth_fast

---------------------------------------------------------------

Gravimetric quantity: second radial derivative of T in Eotvos Units

Total time = 34.85333 CPU seconds

Grid values load time = 30.83817 CPU seconds

Coordinates load time = 0.02228 CPU seconds

Synthesis time = 0.06690 CPU seconds

Values write time = 0.01451 CPU seconds

Semi-length of supports = 16; 16

Total number of points = 1000

Values per second = 14947.80141

---------------------------------------------------------------

---------------------------------------------------------------

program hsynt_standard

---------------------------------------------------------------

Gravimetric quantity: second radial derivative of T in Eotvos Units

Total time = 33.39470 CPU seconds

Model load time = 11.42128 CPU seconds

Coefficient formation time = 0.34734 CPU seconds

Coordinates load time = 0.00856 CPU seconds

Synthesis time = 21.60326 CPU seconds

Values write time = 0.01419 CPU seconds

Total number of points = 1000

Execution time per point = 0.02160 CPU seconds

Values per second = 46.28931

Maximal relative error = 0.4282001E-07

Geocentric coordinates of the maximal error:

( -16.85575013, 292.39107577, 6632672.5475)

---------------------------------------------------------------
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The relative error measured for the 1,000 point test file vary from 4.10 × 10−8

to 6.37× 10−8. Recall that the relative error is computed by (31) and some values
of the norms N (G,E, u) are given in Table 1.

The improvement in computational speed of our code hsynth fast (measured by
Values per second) compared to the software hsynth standard using the “stan-
dard” NGA method is given in the last column of Table 5.

Gravimetric hsynth standard hsynth fast improvement
quantity (1,000 points) (1,000,000 points) (times)

T 46.50 40884.58 879.24
ζ 46.37 40677.58 877.24

∆g 46.11 24716.76 536.04
δg 46.21 24510.06 530.41
ξ 23.32 24831.27 1064.81
η 46.33 24690.56 532.93
Trr 46.29 19918.77 430.30

Table 5. Values per second for codes hsynth standard and
hsynth fast and the improvement in computational speed

The 1,000,000 point input file is used to measure the speed of hsynth fast

because the data for the 1,000 point input file are unstable due to the unstable
output of Fortran intrinsic timing routine system clock for small time intervals
(see the statistics above). The computational speed of hsynth standard, however,
is stable for the 1,000 point input file. The different entries in the third column
of Table 5 reflects the different approximation methods used in hsynth fast to
compute the respective gravimetric quantities. The speed for ξ in the second column
of Table 5 is twice smaller than for the other quantities because two harmonic
expansions (instead of one) are used for its evaluation in hsynth standard. In
order to measure the speed for η in the second column of Table 5 we use option
eta1. For option eta the speed is similar to the speed for ξ as the statistics above
show.

7.3. Other experiments. The code hsynth_fast.f90 has been tested on up to
30, 000, 000 points, which were processed in the speed given in the third column of
Table 5. The relative error did not exceed 4.64× 10−7 for all tests measured with
hsynth_standard.f90.
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8. Conclusions

The experiments with the software described above demonstrate the capability
of our needlet method for fast evaluation of gravimetric quantities represented in
terms of solid spherical harmonics at many scattered points in the exterior space.
The current version hsynth_fast.f90 of our software runs at speed between 20,00
and 40,000 point evaluations per second, which is between 430 and 1064 times faster
than the software using the “standard” NGA methods.

The needlet method described in this manual is not limited to spheri-
cal/ellipsoidal harmonics of degree 2190. There is strong evidence that this tech-
nology, applied with the current computers with double precision arithmetic, can
handle quantities represented in spherical/ellipsoidal harmonics of degrees above
10,000. Therefore, the needlets can be a handy tool in future more accurate mod-
els.
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