EXTREMAL APPROXIMATELY CONVEX FUNCTIONS
AND THE BEST CONSTANTS IN A THEOREM OF
HYERS AND ULAM

S. J. DILWORTH, RALPH HOWARD, AND JAMES W. ROBERTS

Abstract. Let $n \geq 1$ and $B \geq 2$. A real-valued function f defined on the n-simplex Δ_n is approximately convex with respect to Δ_{B-1} if

$$f \left(\sum_{i=1}^{B} t_i x_i \right) \leq \sum_{i=1}^{B} t_i f(x_i) + 1$$

for all $x_1, \ldots, x_B \in \Delta_n$ and all $(t_1, \ldots, t_B) \in \Delta_{B-1}$. We determine the extremal function of this type which vanishes on the vertices of Δ_n. We also prove a stability theorem of Hyers-Ulam type which yields as a special case the best constants in the Hyers-Ulam stability theorem for ε-convex functions.

Date: November 27, 2000.

1991 Mathematics Subject Classification. Primary: 26B25, 41A44; Secondary: 39B72, 51M16, 52A40.

Key words and phrases. Convex functions, approximately convex functions, Hyers-Ulam Theorem, best constants.