
BLASCHKE’S ROLLING THEOREM FOR MANIFOLDS
WITH BOUNDARY

RALPH HOWARD

Abstract. For a complete Riemannian manifoldM with compact bound-
ary ∂M denote by C∂M the cut locus of ∂M in M . The rolling radius
of M is Roll(M) := dist(∂M, C∂M ). (When M is a compact domain in
Euclidean space this agrees with the definition given by Blaschke.) Let
Focal(∂M) be the focal distance of ∂M in M . When M is a strictly con-
vex domain in Euclidean space Blaschke’s rolling theorem is the equality
Roll(M) = Focal(∂M). In this note we give other conditions that im-
ply Roll(M) = Focal(∂M). In particular Blaschke’s theorem holds if:
(1) The Ricci tensor Ric of M is non-negative and the mean curvature
H of ∂M with respect to the inward normal is positive. (2) The sec-
tional curvature of M is non-negative and at every point of ∂M are
least (dimM)/2 of the principal curvatures of ∂M with respect to the
inward normal are positive. (3) M is the complement of a bounded star
like domain D with Euclidean space. Also in (1) if the condition on the
mean curvature is weakened to just being non-negative there is a rigidity
result: All counterexamples to Blaschke’s theorem are either products
∂M×[0, b] or “generalized Möbius bands”. These results extend to more
general curvature conditions.
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1. Introduction

Let M ⊂ Rn be a bounded domain with smooth boundary. The rolling
radius of M (denoted by Roll(M)) is the largest number r so that for each
x ∈ ∂M there is an open ball B(y, r) ⊆ M with x ∈ B(y, r) (the closure
of B(y, r)). That is it is possible to roll a ball of radius r along ∂M and
stay inside of M . If M is strictly convex (that is the principal curvatures
λ1, . . . , λn−1 of ∂M with respect to the inward normal are strictly positive)
then:
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Blaschke’s Rolling Theorem [3, 19, 25, 8] If M is strictly convex

Roll(M) = inf
{

1
λi(x)

: x ∈ ∂M, 1 ≤ i ≤ n− 1
}
.

In this note this is extended to more general domains and to Riemannian
manifolds with boundary. Let M be a complete Riemannian manifold with
nonempty boundary ∂M and n be the inward pointing unit normal to ∂M .
For each x ∈ ∂M let γx(t) := expx(tn(x)) be the unit speed geodesic starting
at x with γ′x(0) = n(x). The cut point of x ∈ ∂M is the point (if one exists)
Cut∂M (x) := γx(t0) where γx stops minimizing the distance to ∂M . The
cut locus of ∂M is

C∂M := {Cut∂M (x) : x ∈ ∂M}.
If x ∈ ∂M and r = dist(x, C∂M ), then the open ball B(Cut∂M (x), r) is
disjoint form ∂M , x ∈ B(Cut∂M (x), r) and this is not true for any ball
of larger radius. Thus the natural generalization of the rolling radius to
complete Riemannian manifolds with boundary is

Roll(M) := dist(∂M, C∂M ).

If x ∈ ∂M , the focal distance (which may be infinite) of x is the number
t = t0 so that x stops being a local minimum of the function dist(γx(t), ·)
defined on ∂M . Let focal∂M (x) be the focal distance of x ∈ ∂M and set

Focal(∂M) := min{focal∂M (x) : x ∈ ∂M}.
Clearly Roll(M) ≤ Focal(M). If M is a strictly convex domain in Rn then
by standard results Focal(M) = inf{1/λi(x) : x ∈ ∂M, λi(x) > 0, 1 ≤
i ≤ n − 1} so if M is strictly convex then Blaschke’s rolling theorem is the
equality Roll(M) = Focal(∂M).

For general Riemannian manifolds with boundary it is easier to compute,
or at least estimate, Focal(∂M) in terms of curvature properties of M and
∂M than it is to estimate Roll(M) directly. Thus it is also interesting in the
more general case of Riemannian manifolds with boundary to know when
Roll(M) = Focal(∂M).

Theorem 1. Let M be a complete Riemannian manifold with compact bound-
ary so that the Ricci tensor satisfies Ric ≥ 0 and the mean curvature of ∂M
with respect to the inward normal is positive. Then Roll(M) = Focal(∂M).

Theorem 2. Let M be a complete Riemannian manifold of dimension n
with compact boundary so that the sectional curvature of M satisfies KM ≥ 0
and at each point x ∈ ∂M at least n/2 of the principal curvatures of ∂M
with respect to the inward normal are positive. Then Roll(M) = Focal(∂M).

Generalizations to the case of arbitrary lower bounds on the Ricci or sec-
tional curvature are given in Theorems 2.3 and 2.4 below. The proofs are
based on a lemma, motivated by results of Klingenberg [17, 18], which states
that Roll(M) < Focal(∂M) implies the existence of a geodesic segment in M
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perpendicular to ∂M at its endpoints, with its midpoint in C∂M and whose
length is a local minimum for all curves with both end points on ∂M .

There is a rigid version of Theorem 1 under the assumption the mean
curvature is only nonnegative. A Riemannian cylinder is a Riemann-
ian product N × [0, b] for some compact Riemannian manifold N and some
b > 0. Let N be a compact Riemannian manifold with a fixed point free
isometry θ : N → N of order two (that is θ ◦ θ = Id). Then the gen-
eralized Möbius band based on N and θ is N × [0, b]/ ∼ where ∼ is
the equivalence relation that identifies (x, b) with (θ(x), b). If the Ricci of
N is non-negative, then both the Riemannian cylinder and the generalized
Möbius band have non-negative Ricci tensor, totally geodesic boundary, and
Roll(M) < Focal(∂M) = ∞. These examples show that in Theorem 1 it is
not possible to replace “positive mean curvature” with “non-negative mean
curvature”. However these are the only counterexamples:

Theorem 3. Let M be a complete connected Riemannian manifold with
smooth non-empty compact boundary ∂M so that the Ricci tensor of M
satisfies Ric ≥ 0 and with the mean curvature H of ∂M with respect to the
inward normal is non-negative. If Focal(∂M) > Roll(M) then M is either
a Riemannian cylinder or a generalized Möbius band.

This is closely related to a rigidity theorem of Galloway [12] and the warped
product splitting theorems of Kasue [16] and Croke-Kleiner [7]. If M is a
domain in Euclidean space then it is never a Riemannian cylinder or general-
ized Möbius band so this extends Blaschke’s theorem Roll(M) = Focal(∂M)
from the class of convex domains to the class of “mean convex” domains (do-
mains with non-negative mean curvature). This allows the topology of the
domains to be more complicated, as every convex domain is diffeomorphic
to an open ball, but mean convex sets can be much more complicated. For
example every compact oriented surface can be realized as the boundary of
a domain in R3 with positive mean curvature. Even for convex domains in
Rn Theorem 3 is an improvement of the usual version of Blaschke’s result as
it only requires that the principal curvatures are non-negative rather than
positive. In the convex case this stronger version of the Blaschke theorem
was first proven by Brooks and Strantzen [4, Thm 4.3.2 p53].

As a problem in Euclidean differential geometry it is as natural to roll a
ball on the outside of a bounded non-convex domain as it is to roll it on the
inside of a convex domain:

Theorem 4. Let D be a bounded starlike open set in Rn with smooth bound-
ary and let M := Rn \ D be the complement of D. Then M satisfies
Blaschke’s theorem Roll(M) = Focal(∂D).

This is generalized in Theorem 3.1.
One use of the Blaschke theorem is to give lower bounds for the inradius

of a domain M ⊂ Rn. Under various assumptions on the topology of the
domain M and assuming the principal curvatures of ∂M satisfy |λi| ≤ 1



4 RALPH HOWARD

there are sharp lower bounds on the inradius of non-convex domains [20, 21,
22, 23, 24]. Several of these results have been extended to compact manifolds
with boundary under curvatures bounds by Alexander and Bishop [1]. It is
interesting that in most cases these lower bounds are less than Focal(∂M)
and thus do not follow from Blaschke’s theorem or its generalizations.

As some readers may wish to avoid dealing with the formalism of Rie-
mannian geometry in Section 5 we give more or less “tensor free” proofs of
some of the results in the case M is a domain in Euclidean space. For other
results and references relating to the rolling radius cf [2, 8, 11, 14, 19, 25,
26, 28] and especially [4] which has a wealth of information in the case of
convex domains in Rn.

2. The Main Lemma: Klingenberg Segments

In this section M will be a complete connected Riemannian manifold
of dimension n with nonempty compact smooth boundary ∂M . In is not
assumed the boundary is connected. Let ∇ be the Riemannian connec-
tion of M and R be the curvature tensor of M with the sign chosen so that
R(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z. For any vector X, the Ricci ten-
sor Ric is defined by Ric(X,X) :=

∑n−1
i=1 〈R(X, ei)ei, X〉 where e1, . . . , en−1

is an orthonormal basis of X⊥.
Let n be the inward pointing unit normal to ∂M , and let II be the

second fundamental form of ∂M with respect to n. That is for vector
fields X,Y tangent to M , then II(X,Y ) = 〈∇XY,n〉. The Weingarten
map or shape operator of ∂M is the linear map on tangent spaces to
∂M given by AX := −∇Xn. It is related to II by 〈AX,Y 〉 := II(X,Y ).
The mean curvature H of ∂M with respect to n at x is H = (1/(n −
1)) trace(A) = (1/(n−1))

∑n−1
i=1 II(ei, ei) where e1, . . . , en−1 is an orthogonal

basis of T (∂M)x. The principal curvatures of ∂M with respect to n are
the eigenvalues λ1, . . . , λn−1 of the shape operator A.

For each x ∈ ∂M set γx(s) := exp(sn(x)), the inward pointing unit speed
geodesic normal to ∂M . Then the cut distance of ∂M along γx, denoted by
CutDist∂M (x), is the supremum of the numbers s so that dist(γx(s), ∂M) =
s. The cut point of ∂M along γx is γx(CutDist∂M (x)n(x)). The cut
locus of ∂M in M is the set Cut∂M := {γx(CutDist∂M (x)n(x)) : x ∈
∂M} of all cut points of ∂M . If M is compact, then CutDist∂M (x) is
bounded form above. However if M is not compact, then CutDist∂M (x) =
∞ for at least one x ∈ ∂M . The rolling radius of M is Roll(M) :=
minx∈∂M CutDist∂M (x). There are natural cases, for example when M is the
complement of an open bounded convex subset of Rn, where Roll(M) =∞.
The inradius of M is InRad(M) = supy∈M dist(y, ∂M). Clearly Roll(M) ≤
InRad(M).

The focal distance , focal∂M (x), of ∂M along γx is supremum of the set
of r so that the function defined on ∂M by y 7→ dist(y, γx(r)) has a local
minimum at x. From the definitions CutDist∂M (x) ≤ focal∂M (x). The focal
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distance of ∂M is Focal(∂M) := minx∈∂M focal∂M (x). There is a useful
description of the focal distances in terms of Jacobi fields, which are in turn
controlled by curvature. For x ∈ ∂M a ∂M adapted Jacobi field V along
γx is a vector field s 7→ V (s) that satisfies

V ′′ +R(V, γ′x)γ′x = 0 and V (0) ∈ T (∂M)x, V ′(0) = −AV (0)

where V ′ = ∇V /ds and V ′′ = ∇2V /ds2. The point γx(s0) is a focal point
of ∂M along γx iff there is an ∂M adapted Jacobi field V along γx so that
V (s0) = 0. If γx(s0) is the first focal point along γx then focal∂M (x) = s0.
The first two parts of the following lemma are an easy variant on standard
result characterizing the cut locus of a point in a Riemannian manifold cf [5,
Lemma 5.2]. We give the short proof for completeness.

Proposition 2.1. If x ∈ ∂M , then γx(s0) is the cut point of ∂M along γx
if and only if one of the following holds for s = s0 and neither holds for any
smaller value of s:

1. γx(s0) is a focal point of ∂M along γx, or
2. There is anther geodesic segment α 6= γx form ∂M to γx(s0) so that α

is perpendicular to ∂M and Length(α) = s0.
Moreover if x ∈ ∂M and z := γx(s0) is the cut point of ∂M along γx and

3. z is not a focal point of ∂M ,
4. there are exactly two geodesic segments α1 := γx and α2, form z to
∂M with Length(α1) = Length(α2) = dist(z, ∂M),

then near z the cut locus C∂M of ∂M is a smooth hypersurface and the
tangent space T (C∂M )z to C∂M at z is the bisector of the two vectors α′2(s0)
and α′2(s0).

Proof. Let sk > s0 be a sequence of real numbers with sk ↘ s0. Then as
s0 is the cut distance of ∂M along γx the distance of γx(sk) to ∂M is < sk.
Let xk ∈ ∂M be a point realizing the distance of γx(sk) to ∂M and let
αk be the minimizing geodesic form xk to γx(sk). Then each αk 6= γx and
is orthogonal to ∂M . By passing to a subsequence it can be assumed the
sequence {xk} converges, say xk → x∞ ∈ ∂M . There are two cases, first
x∞ = x, in which case γx(s0) is a focal point of ∂M along γx. The second
case is x∞ 6= x. Then limk→∞ αk =: α is a geodesic segment form ∂M to
γx(s0) of length s0 and perpendicular to ∂M .

To prove parts 3 and 4 imply the last part of the proposition set x1 = x,
let x2 ∈ ∂M be the initial point of the geodesic α2 and let Ui ⊂ ∂M be
a very small open neighborhood of xi in ∂M . Let ρi : M → [0,∞) be
ρi(y) := dist(y, Ui). As ∂M has no focal points along the geodesic segment
αi the function ρi is smooth in a neighborhood of z. Let B(z, r) be the
closed geodesic ball of radius r centered at z. ThenB(z, s0)∩∂M = {x1, x2}.
Therefore there is an r just little larger than s0 so thatB(z, r)∩∂M ⊂ U1∪U2.
If δ := r−s0 and p ∈B(z, δ), then the point q ∈ ∂M closest to p is in U1∪U2,
for

dist(q, p) ≤ dist(x1, p) ≤ dist(x1, z) + dist(z, p) ≤ s0 + δ ≤ r.
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So that q ∈B(x, s0) ∩ ∂M ⊂ U1 ∪ U2. By possibly making δ smaller it can
also be assumed B(z, δ) contains no focal points of ∂M , so that for each
p ∈B(z, δ) there is a unique point in each of U1 and U2 closest to p.

We now claim C∂M ∩ Bδ(z, δ) = {p : ρ1(p) = ρ2(p)}. To see this note
no point of B(z, δ) is a focal point of ∂M . Thus by the first part of the
proposition the only way a point p ∈ B(z, δ) can be in the cut locus is if
there are two or more minimizing geodesic geodesic segments from p to ∂M .
By the choice of δ this means that there are exactly two geodesic segments
form p to ∂M , one with an endpoint in U1 and one with an end point in U2

and of the same length. But this set of points is {p : ρ1(p) = ρ2(p)}.
The function f := ρ2 − ρ1 is smooth inB(z, δ). The gradient of ρi at z =

αi(s0) is∇ρi(z) = α′i(s0). Thus∇f(z) = ∇ρ2(z)−∇ρ1(z) = α′2(s0)−α′1(s0).
If this were zero, then α′2(s0) = α′1(s0), which would imply that α1 = α2

which is not the case. Thus ∇f(z) 6= 0. Therefore by the implicit function
theorem the set {p : ρ1(p) = ρ2(p)} is a smooth hypersurface of M near z
with normal vector ∇f(z) = α′2(s0) − α′1(s0). This implies T (C∂M )z is the
hyperplane of T (M)z bisecting α′1(s0) and α′2(s0).

Proposition 2.2 (Main Lemma). Let M be a complete Riemannian man-
ifold with non-empty compact boundary ∂M . Assume R0 := Roll(M) <
Focal(∂M). Then there is a geodesic segment γ : [0, 2R0]→M so that

1. γ is orthogonal to ∂M at both its end points γ(0) and γ(2R0).
2. The midpoint z = γ(R0) of γ is in the cut locus C∂M and near z C∂M

is a smooth hypersurface orthogonal to γ at z.
3. There is a neighborhood N of γ in the C0 topology so that any c ∈ N

with both endpoints on ∂M satisfies Length(c) ≥ Length(γ) = 2R0. (In
particular the second variation of arclength of any smooth variation of
γ with endpoints on ∂M is non-negative and ∂M has no focal points
along γ.)

When Roll(M) < Focal(∂M) any segment γ : [0, 2R0]→M satisfying these
three conditions will be called a Klingenberg segment .

Remark 2.3. These lemmas and their proofs are motivated by results of
Klingenberg [17, 18] about the cut and conjugate loci of points in Rie-
mannian manifolds. Klingenberg showed if the injectivity radius, Inject(M),
of a compact Riemannian manifold M is less than its conjugate distance,
Conj(M), then Inject(M) is one half the length of the shortest closed ge-
odesic in M . The proposition above shows if Roll(M) < Focal(∂M) then
Roll(M) is half the length of a Klingenberg segment. Thus when dealing
with manifolds with boundary Roll(M) and Focal(∂M) are analogous to
Inject(M) and Conj(M) for manifolds without boundary. For a farther sim-
ilarity between Roll(M) and Inject(M) note the map (x, t) 7→ exp(tn(x)) is
a diffeomorphism from ∂M×[0, R0) to a tubular neighborhood of ∂M in ∂M
when R0 = Roll(M) but this is not true for any R0 > Roll(M). Likewise
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Inject(M) is the largest R1 so for all x ∈M and the map expx : T (M)x →M
is a diffeomorphism on the open ball of radius R1 in T (M)x.

Proof. Let z ∈ C∂M be a point of C∂M with dist(z, ∂M) = R0 and let
α1 : [0, R0] → M be a geodesic segment from ∂M to z so that z = α1(R0)
is the cut point of ∂M along γ1. As Roll(M) < Focal(∂M) the point z is
not a focal point of ∂M . Therefore by the last proposition there is at least
one other geodesic segment α2 : [0, R0] → M from ∂M to z. As both α1

and α2 minimize the distance to ∂M they are perpendicular to ∂M . We
now use the notation of the proof of the last proposition. Let xi ∈ ∂M
be the initial point of αi and Ui ⊂ ∂M a very small open neighborhood of
xi in ∂M . Again let ρi(p) = dist(p, Ui). As in the last proof both ρ1 and
ρ2 are smooth functions in a neighborhood of z, the function f := ρ2 − ρ1

has a non-zero gradient at z so that N := {p : ρ1(p) = ρ2(p)} is a smooth
hypersurface near z whose tangent space T (N)z is the bisector between of
the vectors ∇ρ1(z) = α′1(R0) and ∇ρ2(z) = α′2(R0).

If ∇ρ2(z) = α′2(R0) 6= −α′1(R0) = −∇ρ1(z) then there is curve β in N
with β(0) = z and with dρ1(c′(0)) = 〈c′(0), α′1(R0)〉 > 0 and dρ2(c′(0)) =
〈c′(0), α′2(R0)〉 > 0. This implies near t = 0 both ρ1(β(t)) and ρ2(β(t))
are decreasing functions of t. Thus for small t > 0 we have ρ1(β(t)) =
ρ2(β(t)) < R0. Fix such a t and let R1 := ρ1(β(t)) = ρ2(β(t)) < R0. Then
there are geodesic segments σi of length R1 and orthogonal to ∂M at a point
of Ui. By the last lemma this implies that the cut distance of ∂M along
σi is ≤ R1 < R0. But this contradicts that R0 = Roll(M) is the smallest
cut distance of ∂M . Therefore the assumption α′2(R0) 6= −α′1(R0) leads
to a contradiction and so α′2(R0) = −α′1(R0). Define γ : [0, 2R0] → M by
γ(t) := α1(t) for 0 ≤ t ≤ R0 and γ(t) := α2(2R0 − t) for R0 ≤ t ≤ 2R0.
Then γ pieces together to be a smooth geodesic with midpoint z = γ(R0)
and perpendicular to ∂M at both end points.

If α 6= α1 is any geodesic segment from ∂M to z of length R0 then
the argument just given yields α′(R0) = −α′1(R0) which implies α = α2.
Thus there are only two minimizing geodesics form z to ∂M and z is not a
focal point of ∂M so by the last proposition the cut locus C∂M is a smooth
hypersurface near z whose tangent space is the bisector between α′1(R0) and
α′2(R0) = −α′1(R0), which is equivalent to being perpendicular to γ. This
completes the proof of the first part of the proposition.

To prove the last part, as γ⊥C∂M is at z there is a neighborhood N of
γ in the C0 topology so that any c ∈ N intersects C∂M in a point near
z. Let c ∈ N have both endpoints on ∂M . Then c intersects C∂M and as
dist(C∂M , ∂M) = R0 clearly Length(c) ≥ 2R0 = Length(γ). This completes
the proof.

3. Complements of Bounded Domains

One consequence of the Main Lemma 2.2 is that if M is a complete Rie-
mannian manifold with non-empty compact boundary with the property
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that no geodesic segment of M is perpendicular to ∂M at both of its end-
points, then Roll(M) = Focal(∂M). Here we give examples where this con-
dition holds. Let N be a complete simply connected Riemannian manifold
with no boundary and all sectional curvatures ≤ 0. Then by the Cartan-
Hadamard theorem [15, §2.1 p187] N is diffeomorphic to Rn and through
any two points of N there is exactly one geodesic. An open subset D of N is
starlike iff there a point x0 ∈ U so that every point of D can be connected
to N by a geodesic segment staying inside of U .

Theorem 3.1. Let N be a complete simply connected Riemannian manifold
of non-positive sectional curvature and empty boundary. Let D ⊂ N be a
bounded open subset of N with smooth connected boundary so that either

1. D is starlike with respect to some point, or

2. dimN = 2 and the geodesic curvature of ∂D satisfies
∫
∂D
|κ| ds < 4π.

Then the manifold M := N \ D satisfies Blaschke’s theorem Roll(M) =
Focal(∂M).

Proof. We first assume D is starlike with respect to a point x0. If M \D does
not satisfy Roll(M) = Focal(∂M), then R0 := Roll(M) < Focal(∂M) and by
Proposition 2.2 there is a Klingenberg segment γ : [0, 2R0]→M orthogonal
to ∂M = ∂D at its endpoints x1 := γ(0) and x2 := γ(2R0). For i = 1, 2
let γi be the geodesic segment of N form x0 to xi. As D is starlike with
respect to x0 all the points of γi except xi are in D. As γ is perpendicular
to ∂D at xi this implies the angle between γ and γi satisfies <) (γi, γ) ≥ π/2.
Because the sectional curvatures of N are ≤ 0 one of the standard triangle
comparison theorems (see [15, Thm 4.1 p197]) there is a triangle T in the
Euclidean plane R2 with sides γ, γ1 γ2 so that <) (γ, γi) ≥<) (γ, γi) ≥ π/2.
This implies the sum of the angles of T is greater than π which is impossible
for a triangle in R2. This contradiction implies Roll(M) = Focal(M) must
hold.

γP Qq q

q
qR

S

D1

Figure 1.

Now assume dimN = 2 and that N is complete, simply connected, and
has Gaussian curvature K ≤ 0. Assume D is a bounded domain in N
with smooth boundary and so that the geodesic curvature of the boundary
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satisfies
∫
∂D |κ| ds < 4π. Let M = N \ D. Again if R0 := Roll(M) <

Focal(∂M) by Proposition 2.2 there is a Klingenberg segment γ : [0, 2R0]→
M that is orthogonal to ∂M at both of its endpoints. Let P := γ(0) and
Q := γ(2R0). These points divide the curve ∂M = ∂D into two arcs P̂RQ
and P̂SQ (cf. Figure 1). Then γ ∪ P̂SQ is a simple closed curve and N is
diffeomorphic to the plane R2 so by the Jordan curve theorem N \(γ∪P̂SQ)
has a bounded component D1. Likewise let D2 be the bounded component
of N \ (γ ∪ P̂RQ). Let α1 and α2 be the two interior angles of D1 and β1

and β2 the two interior angles of D2. Then as γ is perpendicular to ∂D all
of exactly two of the four angles α1, α2, β1, β2 are equal to π/2 and the other
two are equal to 3π/2. We now claim that α1 and α2 are either both π/2 or
3π/2. For if α1 = 3π/2 and α2 = π/2 and the angle α1 is at the point P , then
the part of the arc P̂RQ near P is inside of D1, but the part of P̂RQ near
Q is outside of D1. This would imply that P̂RQ intersects ∂D1 = γ ∪ P̂SQ
at a point other than one of its endpoints which is impossible.

Choose the notation so that D1 has both its interior angles equal to π/2
and D2 has both its interior angles equal to 3π/2. If U is a bounded simply
connected domain in with piecewise smooth boundary, interior angles θi and
boundary geodesic curvature κ then the Gauss-Bonnet theorem [6, p125]
gives ∫

∂U
κ ds = 2π +

∑
i

(θi − π)−
∫
D
K dA ≥ 2π +

∑
i

(θi − π)

as K ≤ 0 on N . As both interior angles of D1 are π/2 and the interior
angles of D2 are 3π/2∫

∂D1

|κ| ds =
∫
P̂SQ
|κ| ds ≥ π,

∫
∂D2

|κ| ds =
∫
P̂RQ

|κ| ds ≥ 3π,

so that
∫
∂D |κ| ds =

∫
P̂SQ
|κ| ds +

∫
P̂RQ

|κ| ds ≥ 4π, a contradiction. This
completes the proof.

4. Curvature and Blaschke’s Theorem

Define cK0(s) and sK0(s) by the initial value problems

c
′′
K0

(s) +K0cK0(s) = 0, cK0(0) = 1, c
′
K0

(0) = 0,

s
′′
K0

(s) +K0sK0(s) = 0, sK0(0) = 0, s
′
K0

(0) = 1.

Explicitly:

cK0(s) =


cos
(

s√
K0

)
, K0 > 0

1, K0 = 0

cosh
(

s√
−K0

)
, K0 < 0
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sK0(s) =


√
−K0 sin

(
s√
K0

)
, K0 > 0

s, K0 = 0
√
−K0 sinh

(
s√
−K0

)
, K0 < 0.

Definition 4.1. Let M be a Riemannian manifold with boundary. Then
the normal width of M is ≥ W0 iff every geodesic γx(s) with x ∈ ∂M
and γ′x(0) = n(x) meets ∂M for the first time at some point γx(s0) with
s0 ≥ W0. The maximum such W0 is the normal width of M and will be
denoted by NorWid(M).

Remark 4.2. IfM is a convex domain in Rn then NorWid(M) is the width in
the usual sense (that is the smallest distance W0 so that M in the region be-
tween two parallel hyperplanes at a distance D0 form each other). However
if M ⊂ Rn is not convex then generally NorWid(M) will be less than the
width. The quantity NorWid(M) is interesting in extending Blaschke’s the-
orem to positively curved manifolds. Theorem 1 of the introduction implies
Blaschke’s theorem holds when M is a domain in a hemisphere of the unit
sphere provided ∂M has non-negative mean curvature. We will show that
for domains on the sphere with NorWid(M) ≥ π that Roll(M) = Focal(∂M)
without any assumption on the boundary curvature.

Theorem 4.3. Let M be a complete connected n dimensional Riemannian
manifold with non-empty compact boundary ∂M . Assume the Ricci tensor
of M and the mean curvature H of ∂M with respect to the inward normal
satisfy

RicM ≥ (n− 1)K0, H ≥ H0,

and that at least one of the following holds
1. K0 ≤ 0 and H0 ≥

√
−K0, or

2. K0 > 0 and NorWid(M) ≥ π√
K0

(with no condition on the mean

curvature).
Then Roll(M) < Focal(∂M) if and only if K0 = H0 = 0 and M is either a
Riemannian cylinder or a generalized Möbius band.

Theorem 4.4. Let M be a compact n dimensional Riemannian manifold
with non-empty smooth boundary ∂M . Assume the sectional curvature of M
and the principal curvatures λ1, . . . , λn−1 of ∂M with respect to the inward
normal satisfy:

KM ≥ K0, at any point of ∂M at least n/2 of the λi satisfy λi ≥ H0.

Also assume:
1. If K0 = 0, then H0 > 0.
2. If K0 < 0, then H0 ≥

√
−K0.
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3. If K0 > 0, then NorWid(M) ≥ π√
K0

(with no restrictions on the

principal curvatures).
Then Roll(M) = Focal(∂M).

Proof of Theorem 4.3. We first show ifM is non-compact Roll(M) = Focal(∂M) =
∞. If K0 > 0 then M is compact because the first focal point of ∂M along
an inward pointing normal geodesic γ at x ∈ ∂M is at a distance less than
the first conjugate distance of x along γ ≤ ρ0 and the first conjugate dis-
tance is ≤ π/

√
K0 (cf [5, Thm 1.26 p27]). Thus every point of M is at a

distance ≤ π/
√
K0 form ∂M . As ∂M is compact this implies M is com-

pact. If K0 ≤ 0 and M is non-compact, then the warped product splitting
theorems of Kasue [16, Thm C] or Croke-Kleiner [7, Thm 3] apply and M is
isometric to either a product (if K0 = 0) or a warped product (if K0 < 0) of
∂M and a ray [0,∞). In either case Roll(M) = Focal(∂M) =∞ as claimed.

Therefore assume M is compact. First consider the case K0 > 0 and
NorWid(M) ≥ π/

√
K0. If γx(s) = expx(sn(x)) is a geodesic normal to

∂M and l is so that γx(l) ∈ ∂M then l ≥ π/
√
K0. As the first focal point

of ∂M along γx occurs before the first conjugate point of x along γx as
above this means the first focal point of ∂M along γx occurs at a point γ(a)
with a < l. Therefore by part 3 of Proposition 2.2 γx is not a Klingenberg
segment. But ifM has no Klingenberg segments then Proposition 2.2 implies
Roll(M) = Focal(∂M).

This leaves the cases where K0 ≤ 0. We first prove the result under the
more restrictive conditions

K0 = 0, H0 > 0, or K0 < 0, H0 ≥
√
−K0.(4.1)

(Strictly speaking the proof of this theorem only requires us to consider
the case of H0 ≤

√
−K0, however the calculations in the other case are

needed in the proof of Theorem 4.4.) If R0 := Roll(M) < Focal(∂M) by
Proposition 2.2 there is Klingenberg segment γ : [0, 2R0]→M . To simplify
notation set l := 2R0. By a smooth variation of γ we mean a smooth
map α : [0, l] × (−ε, ε) → M so that α(s, 0) = γ(s) and for all t ∈ (−ε, ε)
α(0, t) ∈ ∂M , and α(l, t) ∈ ∂M . Under the assumptions (4.1) we show
there is a smooth variation α of γ so that Length(s 7→ α(s, t)) < l for
small t 6= 0. This is based on the second variation formula for arclength.
Given a smooth variation α of γ, let αt be the curve s 7→ α(s, t) and let
L(t) := Length(αt). Let V (s) := ∂α/∂t(s, 0) be the variation vector field of
α and let V ′ := ∇V/∂s, V ′′ := ∇2V/∂s2 be the covariant derivatives of V
along γ. Then the second variation formula [9, p208] is

L′′(0) =
∫ l

0
(〈V ′, V ′〉 − 〈R(V, γ′)γ′, V 〉) ds− II(V (0), V (0))− II(V (l), V (l)).

Let ei(s) (1 ≤ i ≤ n− 1) be parallel vector fields along γ so that for each s
the vectors e1(s), . . . , en−1(s), γ′(s) are an orthonormal basis of T (M)γ(s).
Let f be a smooth function on [0, l] and set Vi(s) = f(s)ei(s). Then V ′ =
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f ′ei. Let αi be smooth variations of γ so that ∇αi/∂t(s, 0) = Vi(s) and
set Li(t) = Length((αi)t). Averaging the second variations of the αi’s and
using the bounds on the Ricci and mean curvature along with integration
by parts:

1
n− 1

n−1∑
i=1

L′′i (0) =
∫ l

0

(
(f ′)2 − 1

n− 1
Ric(γ′, γ′)

)
ds

− f(0)2H(γ(0))− f(l)2H(γ(l))

≤
∫ l

0
((f ′)2 −K0f

2) ds−H0(f(0)2 + f(l)2)

= −f(0)(f ′(0) +H0f(0)) + f(l)(f ′(l)−H0f(l))

−
∫ l

0
f(f ′′ +K0f) ds

Let f(s) = cK0(s−l/2). Using c
′
K0

= K0sK0 , cK0(−s) = cK0(s), sK0(−s) =
−sK0(s), and f ′′+K0f = 0, for this choice of f the last inequality becomes

1
n− 1

n−1∑
1

L′′i (0) ≤ −2cK0(l/2)(H0cK0(l/2)−K0sK0(l/2))

We now claim under the assumptions of (4.1) this is negative. In the, K0 =
0, H0 > 0, we have cK0 ≡ 1 so the inequality becomes 1

n−1

∑n−1
i=1 L

′′
i (0) ≤

−2H0 < 0. In the case K0 < 0 and H0 ≥
√
−K0 the inequality reduces to

1
n− 1

n−1∑
i=1

L′′i (0) ≤ −2cK0(l/2)
(
H0 cosh(

√
−K0 (l/2))

−
√
−K0 sinh(

√
−K0 (l/2))

)
< 0

as cosh(t) > sinh(t) > 0 for all t > 0. Thus 1
n−1

∑n−1
i=1 L

′′
i (0) < 0 in this

case also. But if the average of the variations L′′i (0) is negative, then for
at least one i the second variation of αi is negative. Thus Li(t) < L(0) =
Length(γ) = l for small t 6= 0 which contradicts part 3 of Proposition 2.2.
Therefore Roll(M) = Focal(∂M) under the assumptions of (4.1).

In general case of K0 = 0 and H0 ≥ 0 assume γ is a Klingenberg segment
as above and that U1 is a small neighborhood of γ(0) in ∂M and U2 is a small
neighborhood of γ(l) in ∂M . Let ρi : M → [0,∞) be ρi(x) := dist(x,Ui).
Then Proposition 2.2 implies that in a small tubular neighborhood τδ(γ)
of γ that ρ1 + ρ2 ≥ l = Length(γ). Therefore we are in the case of a
“local” version of the warped product splitting theorems [16, 7] and the
same arguments apply. By basic comparison results [16, Lemma 1.1] both
ρ1 and ρ2 are sub-harmonic in a neighborhood of γ. Thus ρ1 + ρ2 is also
sub-harmonic in a neighborhood of γ and for any point γ(t) of γ there holds
ρ1(γ(t))+ρ2(γ2(t)) = t+(l−t) = l. Then ρ1 +ρ2 has a local minimal at γ(t)
and so by the maximal principal [13, Thm 3.5] ρ1 + ρ2 ≡ l is constant in a
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neighborhood of γ. Therefore ρ1 ≡ l on U2. By the argument in the proof of
Theorem 1 of [7] this implies that a tubular neighborhood of γ splits isomet-
rically as product U1× [0, l]. An easy continuation argument now shows that
near every point x ∈ ∂M that in a neighborhood of γx(t) := exp(tn(x)) M
splits locally as a metric product U×[0, l] for some neighborhood of x in ∂M
and the cut locus C∂M is the set {exp(R0n(x)) : x ∈ ∂M} of midpoints of
the segments normal to M . Moreover the map x 7→ exp(R0n(x)) from ∂M
to C∂M is a two to one local isometry. The cut locus C∂M is a deformation re-
tract of M (the homotopy is accomplished by moving in along the normal to
∂M) and M is connected therefore C∂M is connected. As x 7→ exp(R0n(x))
is two to one and C∂M is connected the boundary consists either of two con-
nected components isometric to C∂M or ∂M is a double cover of C∂M . As M
is locally a product of C∂M and an interval [0, l] = [0, 2R0] it follows if ∂M
has two components then M is isometric to the product ∂M× [0, l]. If ∂M is
connected then define a map θ : ∂M → ∂M by θ(x) := exp(2R0n(x)) ∈ ∂M .
Because M is locally a product of ∂M and [0, 2R0] this map is a fixed point
free isometry of ∂M . Let ∼ be the equivalence relation on ∂M × [0, R0] that
identifies (x,R0) with (θ(x), R0) so that ∂M × [0, R0]/ ∼ is a generalized
Möbius band. The map Θ(x, t) := exp(tn(x)) form ∂M × [0, R0]/ ∼ to M
is then an isometry so M is a generalized Möbius band.

Proof of Theorem 4.4. First consider the case of K0 > 0 and NorWid(M) ≥
π/
√
K0. As in the beginning of the last proof, this implies any point of a

geodesic has a conjugate point at distance ≤ π/
√
K0 (cf [5, Thm 1.26 p27]).

Then the argument above shows M has no Klingenberg segments and thus
Roll(M) = Focal(∂M).

WhenK0 ≤ 0 assume, toward a contradiction, R0 := Roll(M) < Focal(∂M).
By Proposition 2.2 there is a Klingenberg segment γ : [0, 2R0] → M . Set
l = 2R0, x1 := γ(0), and x2 := γ(l). By hypothesis there is a linear subspace
Wi ⊂ T (∂M)xi with dimWi ≥ (dimM)/2 and II(X,X) ≥ H0〈X,X〉 for all
X ∈ Wi. If W1 is parallel translated along γ to γ(l) = x2 by elementary
linear algebra this translated subspace has a nonzero vector in common with
W2 (as dimW0 + dimW1 ≥ 2(n/2) > (n − 1) = dim(∂M)). Thus there is
a parallel unit vector field e(t) along γ(t) so that II(e(0), e(0)) ≥ H0 and
II(e(l), e(l)) ≥ H0. As in the proof of Theorem 4.3 let f(s) = cK0(s − l/2)
and V (t) = f(t)e(t). Using this V in the second variation formula and doing
a calculation like the one in the proof of Theorem 4.3 leads to

L′′(0) ≤ −2cK0(l/2)(K0sK0(l/2) +H0cK0(l/2)).

As in the proof of Theorem 4.3 this is negative which contradicts part 3 of
Proposition 2.2.

5. Euclidean Proofs

The two basic Propositions 2.1 and 2.2 hold in the Euclidean with exactly
the same proofs (just replace geodesics with lines and ignore the parts the
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first three paragraphs of Section 2 that deal with the Riemannian set up).
The results of Section 3 simplify in the Euclidean case: It is more or less
obvious that if D ⊂ Rn is a starlike bounded open set with smooth boundary
then M := Rn \ D has no segments γ perpendicular to ∂M at both end
points. Thus M has no Klingenberg segments and Proposition 2.2 implies
Roll(M) = Focal(∂M).

Let M ⊂ Rn be a domain with ∂M smooth and connected. If R0 :=
Roll(M) < Focal(∂M) then Proposition 2.2 yields a Klingenberg segment
γ : [0, 2R0]→M . By a rotation and translation we assume γ is the segment
between the points γ(0) = (0, 0) ∈ Rn−1 × R and γ(2R0) = (0, 2R0) ∈
Rn−1 ×R. Let U1 be a small open piece of ∂M near (0, 0) and U2 a small
open piece of ∂M near (0, 2R0). Let V be a small open neighborhood of
the origin in Rn−1 then both U1 and U2 can be expressed as the graphs
of functions fi : V → R. That is (after making U1, U2 and V smaller) we
have Ui = {(x, fi(x)) : x ∈ V }. As the segment γ is a part of the xn-
axis and γ is perpendicular ∂M for i = 1, 2 and α = 1, . . . , n − 1 we have
∂fi/∂xα(0) = 0. If D2fi(·, ·) is the Hessian of fi (viewed as a symmetric
bilinear form whose matrix in the standard orthonormal basis e1, . . . , en−1 of
Rn−1 is [∂2fi/∂xα∂xβ]), the second fundamental form IIi(·, ·) of ∂M at the
point (0, fi(0)) is IIi(·, ·) = (−1)i+1D2f(·, ·) (the factor of −1 for II2 comes
from the fact the inward normal to ∂M at (0, f2(0)) points downward). So
the Taylor’s expansion of fi is

fi(x) = fi(x1, . . . , xn−1) = fi(0) +
(−1)i+1

2

n−1∑
α,β=1

IIi(eα, eβ)xαxβ +O(‖x‖3)

For v ∈ Rn−1 let cv,s : [0, 2R0]→M be the line segment

cv,s(t) :=
(
sv,

(2R0 − t)f1(sv) + tf2(sv)
2R0

)
.

The length L(cv,s) of the curve is the distance between its endpoints which
is f2(sv)− f1(sv). Using the Taylor expansion for fi

d

ds
L(cv,s)

∣∣∣∣
s=0

= 0,
d2

ds2
L(cv,s)

∣∣∣∣
s=0

= −(II1(v, v) + II2(v, v)).(5.1)

The principal curvatures of ∂M with respect to the inward normal n are
the eigenvalues of the second fundamental form II of ∂M (with respect to
the induced metric on ∂M). If at each point x of ∂M at least n/2 of the
principal curvatures of ∂M are positive, then at each point x of ∂M , there is
a subspace V of the tangent space of ∂M to ∂M at x with dimension ≥ n/2
so that II is positive definite on V (take V to be the span of the eigenvectors
of II corresponding to the positive principal curvatures). Let Vi ⊆ Rn−1

be a subspace of Rn−1 of dimension ≥ n/2 with IIi positive definite on Vi.
Then dimV1 + dimV2 > n − 1 so there is a vector 0 6= v ∈ V1 ∩ V2. Using
this vector in (5.1) gives for small s > 0 that L(cv,s) < 2R0 = L(γ). Thus
there are curves as close as we like to γ with both endpoints on ∂M and
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with length < 2R0. This contradicts part 3 of Proposition 2.2 and completes
the proof of Theorem 4.4 in the Euclidean case. The mean curvature H of
∂M is given by (n − 1)H = trace II. Thus if in (5.1) we let v vary over an
orthonormal basis e1, . . . , en−1 and sum:

n−1∑
i=1

d2

ds2
L(cei,s)

∣∣∣∣
s=0

= − trace(II1)− trace(II2) = −(n− 1)(H1 +H2).

If the mean curvature of ∂M is strictly positive we again get a contra-
diction to part 3 of Proposition 2.2 which implies all second variations
d2/ds2L(cei,s)|s=0 most be non-negative. While this argument does not cover
the general case of H non-negative it does avoid use of elliptic theory.

Let λ1, . . . , λn−1 be the principal curvatures of ∂M with respect to n
and for r ≥ 0 define Fr : ∂M → Rn by Fr(x) := x + rn(x). Then Fr
parameterizes the parallel hypersurface to ∂M at a distance of r from ∂M .
Near a point x of ∂M the function Fr is an immersion (i.e. the derivative
of Fr is nonsingular) near x for all r < focal∂M (x). A calculation shows the
mean curvature H(r) of the image of Fr is (n−1)H(r) =

∑n−1
1 λi(1−rλi)−1.

The derivative of this with respect to r is (n−1)H ′(r) =
∑n−1

1 λ2
i (1−rλi)−2.

Thus H(r) is a strictly increasing function of r unless λ1 = λ2 = · · · =
λn−1 = 0. Assume, toward a contradiction, that H ≥ on ∂M , but that
R0 := Roll(M) < Focal(M). We use the notation of the last couple of
paragraphs above (i.e. γ a segment of the xn axis, Ui the graph of fi etc.).
Let U1[2R0] := F2R0 [U1] be the parallel hypersurface to U1 at a distance
of 2R0. Near γ(2R0) = (0, 2R0) it is possible to write U1[2R0] as a graph
of a function xn = f3(x) with x ∈ Rn−1 close to the origin of Rn−1. By
Proposition 2.2 points of U2 are at a distance ≥ 2R0 from U1 which implies
f3(x) ≤ f2(x) for all x in a neighborhood 0 ∈ Rn−1. But the mean curvature
of U1[2R0] is non-negative with respect to the direction of increasing xn and
the mean curvature of U2 in non-positive with respect to the direction of
increasing xn. The equation for mean curvature is quasi-linear elliptic and
thus these curvature inequalities and along with f3 ≤ f2 and f3(0) = f2(0)
implies f3 = f2 in a neighborhood of 0 ∈ Rn−1 (cf [27, Lemma 1 p798] or [10,
Thm 1]) Whence the mean curvature of U3[2R0] vanishes. By the remarks
above this can only happen if all the principal curvatures of U1 vanish, that
is only if U1 is a subset of Rn−1 × {0}. Thus U2 = U1[2R0] is a subset of
{xn = 2R0}. A continuation argument now shows ∂M must contain all of
Rn−1×{0} which is impossible as ∂M is compact. This completes the proof
of Theorem 4.3 in the Euclidean case.

Acknowledgments: Theorem 3 is the result of a conversation with Lars Anders-
son. I am indebted to Dick Bishop for useful discussions and for sending me copies
of his English translations of [20, 21, 22, 23]. I have also benefited from discussions
and correspondence with Stephanie Alexander and Andrejs Treibergs.



16 RALPH HOWARD

References

[1] S. Alexander and R. Bishop. Thin Riemannian manifolds with boundary. Preprint,
(1994).

[2] S. Alexander and R. Bishop. Racetracks and extremal problems for curves of
bounded curvature in metric spaces. Preprint, (1994).

[3] W. Blaschke. Kreis und Kugel. Auflage, Berlin, 1956.
[4] J. N. Brooks and J. B. Strantzen. Blaschke’s rolling theorem in Rn. Memoirs of

Amer. Math. Soc., 80 No. 405, (1989). 101 pages.
[5] J. Cheeger and D. Ebin. Comparison theorems in Riemannian geometry. North

Holland, Amsterdam, 1975.
[6] S.-S. Chern. Curves and surfaces in Euclidean space. In S.-S. Chern, editor, Global

Differential Geometry, Volume 27 of Studies in Mathematics, Mathematical Associa-
tion of America, Providence R. I., (1989), 99–139.

[7] C. B. Croke and B. Kleiner. A warped product splitting theorem. Duke Math.
J., 67 (1992), 571–574.

[8] J. A. Delgado. Blaschke’s theorem for convex hypersurfaces. Jour. Diff. Geo., 14
(1979), 489–496.

[9] M. do Carmo. Riemannian Geometry. Birhäuser, Boston, 1992.
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