CHARACTERIZATION OF EIGENFUNCTIONS
BY BOUNDEDNESS CONDITIONS

RALPH HOWARD AND MARGARET REESE
Department of Mathematics, University of South Carolina
Department of Mathematics, Saint Olaf College

Abstract

Suppose \(\{f_k(x)\}_{k=-\infty}^{\infty} \) is a sequence of functions on \(\mathbb{R}^n \) with \(\Delta f_k = f_{k+1} \) (where \(\Delta \) denotes the Laplacian) that satisfies the growth condition: \(|f_k(x)| \leq M_k (1+|x|)^a \) where \(a \geq 0 \) and the constants have sublinear growth \(\frac{M_k}{k} \to 0 \) as \(k \to \pm \infty \). Then \(\Delta f_0 = -f_0 \). This characterizes eigenfunctions \(f \) of \(\Delta \) with polynomial growth in terms of the size of the powers \(\Delta^k f, -\infty < k < \infty \). It also generalizes results of Roe (where \(a = 0, M_k = M, \) and \(n = 1 \)) and Strichartz (where \(a = 0, M_k = M, \) for \(n \)). The analogue holds for formally self-adjoint constant coefficient linear partial differential operators on \(\mathbb{R}^n \).

COLUMBIA, SOUTH CAROLINA 29208
NORTHFIELD, MINNESOTA 55057