Mathematics 700 Test \#2

Name:
Show your work to get credit. An answer with no work will not get credit.
(1) (15 points) Define or state the following:
(a) A linear map $T: V \rightarrow V$ is diagonalizable (where V is a finite dimensional vector space)
(b) The adjoint of a linear map $S: V \rightarrow W$ between finite dimensional vector spaces V and W.
(c) eigenvalues and eigenvectors of a linear map. (Be sure to be precise about the range and domain).
(d) The determinant of a linear operator $T: V \rightarrow V$ on a vector space.
(e) S^{\perp} where S is a non-empty subset of a finite dimensional vector space V.
(2) (10 points) Find the basis of $\mathbf{R}^{2 *}$ dual to the basis

$$
v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

(3) (15 points) Let \mathcal{P}_{2} be the polynomials of degree ≤ 2 over the real numbers and define a linear map $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ by

$$
T p(x)=p(3 x+2)
$$

Find the eigenvectors and values of T.
(4) (10 points) Show directly form the definitions that a linear map $T: V \rightarrow W$ between finite dimensional vector spaces is injective if and only it its adjoint $T^{*}: W^{*} \rightarrow V^{*}$ is surjective.
(5) (10 points) Show that if a linear operator $T: V \rightarrow V$ has eigenvectors v_{1}, v_{2}, v_{3} with distinct eigenvalues, $\lambda_{1}, \lambda_{2}, \lambda_{3}$, then v_{1}, v_{2}, v_{3} are linearly independent.
(6) (10 points) Let V be a finite dimensional vector space and W a subspace of V and let $v \in V$ with $v \notin W$. Let $S: W \rightarrow U$ be a linear map and $u \in U$. Show that there is a linear map $T: V \rightarrow U$ that extends S and with $T v=u$.
(7) (10 points) Let V be a vector space and $P: V \rightarrow V$ a linear map with $P^{2}=P$. Show that

$$
V=\operatorname{ker}(P) \oplus \operatorname{Image}(P)
$$

(8) (10 points) Let V be a finite dimensional vector space and $v_{1}, v_{2}, v \in V$ such that for all $f \in V^{*}$

$$
f\left(v_{1}\right)=f\left(v_{2}\right)=0 \quad \text { implies } \quad f(v)=0 .
$$

Show that v is a linear combination of v_{1} and v_{2}.
(9) (10 points) Let $A \in M_{3 \times 3}(\mathbf{R})$ be a matrix with characteristic polynomial $x^{3}-x$. Then find a diagonal matrix similar to A.

