Mathematics 700 Test #2

Name:

Show your work to get credit. An answer with no work will not get credit.

- (1) (15 points) Define or state the following:
 - (a) A linear map $T: V \to V$ is *diagonalizable* (where V is a finite dimensional vector space)
 - (b) The *adjoint* of a linear map $S: V \to W$ between finite dimensional vector spaces V and W.
 - (c) *eigenvalues* and *eigenvectors* of a linear map. (Be sure to be precise about the range and domain).
 - (d) The *determinant* of a linear operator $T: V \to V$ on a vector space.
 - (e) S^{\perp} where S is a non-empty subset of a finite dimensional vector space V.
- (2) (10 points) Find the basis of \mathbf{R}^{2*} dual to the basis

$$v_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3\\5 \end{bmatrix}$$

(3) (15 points) Let \mathcal{P}_2 be the polynomials of degree ≤ 2 over the real numbers and define a linear map $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$Tp(x) = p(3x+2).$$

Find the eigenvectors and values of T.

(4) (10 points) Show directly form the definitions that a linear map $T: V \to W$ between finite dimensional vector spaces is injective if and only it its adjoint $T^*: W^* \to V^*$ is surjective.

(5) (10 points) Show that if a linear operator $T: V \to V$ has eigenvectors v_1, v_2, v_3 with distinct eigenvalues, $\lambda_1, \lambda_2, \lambda_3$, then v_1, v_2, v_3 are linearly independent.

(6) (10 points) Let V be a finite dimensional vector space and W a subspace of V and let $v \in V$ with $v \notin W$. Let $S: W \to U$ be a linear map and $u \in U$. Show that there is a linear map $T: V \to U$ that extends S and with Tv = u.

(7) (10 points) Let V be a vector space and $P: V \to V$ a linear map with $P^2 = P$. Show that $V = \ker(P) \oplus \operatorname{Image}(P)$.

(8) (10 points) Let V be a finite dimensional vector space and $v_1, v_2, v \in V$ such that for all $f \in V^*$

$$f(v_1) = f(v_2) = 0$$
 implies $f(v) = 0$.

Show that v is a linear combination of v_1 and v_2 .

(9) (10 points) Let $A \in M_{3\times 3}(\mathbf{R})$ be a matrix with characteristic polynomial $x^3 - x$. Then find a diagonal matrix similar to A.