Mathematics 700 Test #1Name:Show your work to get credit. An answer with no work will not get credit.

- (1) (15 Points) Define the following:
 (a) *Linear independence*.
 - (b) The *kernel* of a linear map $S: V \to W$ where V and W are vector spaces.
 - (c) The *rank* of a linear map.
 - (d) The *dimension* of a vector space.
- (2) (10 Points) Find (no proof required) a linear transformation $T: \mathbf{R}^3 \to \mathbf{R}^2$ so that $T \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad T \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 3\\4 \end{bmatrix}, \quad T \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 5\\6 \end{bmatrix}.$

(3) (10 Points) Find (no proof required) a basis for the set of the space of vectors $(x, y, z, w) \in \mathbf{R}^5$ that satisfy

(4) (20 Points) Let \mathcal{P}_3 be the vector space of polynomials of degree at most 3. Define $T: \mathcal{P}_3 \to \mathcal{P}_3$ by

$$Tp(x) = p'(x+1) - p'(x).$$

(a) Find the matrix of T in the basis $\mathcal{B} := \{1, x, x^2, x^3\}$

(b) What are the rank, nullity and trace of T?

rank=	
nullity=	
trace=	

(5) (15 Points) Show that if v_1, v_2, v_3 are vectors in the vector space \mathbf{R}^4 such that

$$v_1 - 4v_2 + 3v_3 = 0$$

then

$$Span\{v_1, v_2\} = Span\{v_1, v_2, v_3\}.$$

(6) (15 Points) Let $S: \mathbb{R}^5 \to \mathbb{R}^{17}$ be a linear map with nullity(S) = 2. Then show directly (that is without using the rank plus nullity theorem) that rank(S) = 3.

(7) (15 Points) Let $S: \mathbb{R}^{10} \to \mathbb{R}^3$ and $T: \mathbb{R}^{10} \to \mathbb{R}^5$ be linear maps. Then show there are two linearly independent vectors $u, v \in \mathbb{R}^{10}$ with Su = Sv = 0 and Tu = Tv = 0.