Mathematics 700 Test \#1
 Name:

Show your work to get credit. An answer with no work will not get credit.
(1) (15 Points) Define the following:
(a) Linear independence.
(b) The kernel of a linear map $S: V \rightarrow W$ where V and W are vector spaces.
(c) The rank of a linear map.
(d) The dimension of a vector space.
(2) (10 Points) Find (no proof required) a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ so that

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right] .
$$

(3) (10 Points) Find (no proof required) a basis for the set of the space of vectors $(x, y, z, w) \in \mathbf{R}^{5}$ that satisfy

$$
\begin{aligned}
& x+y+z+u+v=0 \\
& x+y+2 z+2 u+2 v=0 \\
& x+y+z+u+2 v=0
\end{aligned}
$$

(4) (20 Points) Let \mathcal{P}_{3} be the vector space of polynomials of degree at most 3. Define $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ by

$$
T p(x)=p^{\prime}(x+1)-p^{\prime}(x) .
$$

(a) Find the matrix of T in the basis $\mathcal{B}:=\left\{1, x, x^{2}, x^{3}\right\}$
(b) What are the rank, nullity and trace of T ?

$$
\begin{aligned}
& \text { rank }= \\
& \text { nullity }= \\
& \text { trace }= \\
&
\end{aligned}
$$

(5) (15 Points) Show that if v_{1}, v_{2}, v_{3} are vectors in the vector space \mathbf{R}^{4} such that

$$
v_{1}-4 v_{2}+3 v_{3}=0
$$

then

$$
\operatorname{Span}\left\{v_{1}, v_{2}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}
$$

(6) (15 Points) Let $S: \mathbf{R}^{5} \rightarrow \mathbf{R}^{17}$ be a linear map with nullity $(S)=2$. Then show directly (that is without using the rank plus nullity theorem) that $\operatorname{rank}(S)=3$.
(7) (15 Points) Let $S: \mathbf{R}^{10} \rightarrow \mathbf{R}^{3}$ and $T: \mathbf{R}^{10} \rightarrow \mathbf{R}^{5}$ be linear maps. Then show there are two linearly independent vectors $u, v \in \mathbf{R}^{10}$ with $S u=S v=0$ and $T u=T v=0$.

