Mathematics 700 Test #2

Solution Key Name:

Show your work to get credit. An answer with no work will not get credit.

- (1) (15 points) Define the following:
 - (a) A linear map $T: V \to V$ is **diagonalizable** (where V is a finite dimensional vector space).

There is a basis v_1, \ldots, v_n of V consisting of eigenvectors of T. Or: There is a basis $\mathcal{V} =$ $\{v_1, \ldots, v_n\}$ of V such that the matrix $[T]_{\mathcal{V}}$ is a diagonal matrix.

(b) The *adjoint* of a linear map $S: V \to W$ between finite dimensional vector spaces V and W.

The adjoint is the linear map $S^* \colon W^* \to V^*$ given by

$$S^*g = g \circ S.$$

(Here \circ is function composition so that if $v \in V$ and $g \in W^*$ then $S^*g = g \circ S$ is given by $S^*g(v) = g(Sv).$

(c) *eigenvalues* and *eigenvectors* of a linear map. (Be sure to be precise about the range and domain).

Eigenvalues and vectors are only defined for linear maps $T: V \to V$ (that is the range and domain are the same). The scalar $\lambda \in \mathbf{F}$ is an eigenvalue iff there is a non-zero vector $v \in V$ such that $Tv = \lambda v$. The vector $v \in V$ is an eigenvector iff it is not the zero vector and $Tv = \lambda v$ for some scalar $\lambda \in \mathbf{F}$.

(d) The *determinant* of a linear operator $T: V \to V$ on a vector space.

Let $\mathcal{V} = \{v_1, \ldots, v_n\}$ be any basis of V and $[T]_{\mathcal{V}}$ the matrix of T with respect to this basis. Then

$$\det T = \det[T]_{\mathcal{V}}.$$

(This is independent of the choice of the basis \mathcal{V} if V.)

(e) S^{\perp} where S is a non-empty subset of a finite dimensional vector space V.

$$S^{\perp} = \{ f \in V^* : f(x) = 0 \text{ for all } f \in V^* \}.$$

That is W^{\perp} is the set of linear functional that vanish on all elements of S. (2) (10 points) Find the basis of \mathbf{R}^{2*} dual to the basis

$$v_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3\\5 \end{bmatrix}$$

Solution: We know that the basis of \mathbf{F}^{n*} dual to a basis v_1, \ldots, v_n of \mathbf{F}^n is made up of the rows of the inverse of the matrix $[v_1, v_2, \ldots, v_n]$ with columns v_1, \ldots, v_n . In the present case

$$\begin{bmatrix} v_1, v_2 \end{bmatrix} = \begin{bmatrix} 1 & 3\\ 2 & 5 \end{bmatrix}$$

The inverse is

$$\begin{bmatrix} v_1, v_2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}^{-1} = \frac{1}{1 \cdot 5 - 3 \cdot 2} \begin{bmatrix} 5 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}.$$

Therefore the dual basis to v_1 and v_2 is

$$f_1 = [-5,3], \quad f_2 = [2,-1].$$

Or in functional notation

$$f_1\begin{bmatrix}x\\y\end{bmatrix} = -5x + 3y, \quad f_2\begin{bmatrix}x\\y\end{bmatrix} = 2x - y.$$

(3) (15 points) Let \mathcal{P}_2 be the polynomials of degree ≤ 2 over the real numbers and define a linear map $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$Tp(x) = p(3x+2).$$

Find the eigenvectors and values of T.

Solution: First we find the matrix of T in some basis of \mathcal{P}_2 . The natural choice is the basis $\mathcal{B} := \{1, x, x^2\}$. In this basis

$$T1 = 1 \sim \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad Tx = 3x + 2 \sim \begin{bmatrix} 2\\3\\0 \end{bmatrix}, \quad Tx^2 = (3x+2)^2 = 9x^2 + 12x + 4 \sim \begin{bmatrix} 4\\12\\9 \end{bmatrix}$$

The matrix A of T in this basis has these vectors as columns. That is

$$A := \begin{bmatrix} T \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 3 & 12 \\ 0 & 0 & 9 \end{bmatrix}$$

Using that the determinant of an upper triangular matrix is the product of the diagonal elemnts we see that the characteristic polynomial of T is

$$char_T(x) = det (xI - A) = (x - 1)(x - 3)(x - 9).$$

and that its roots are 1, 3 and 9. Thus the eigenvalues of T (which are the same as the eigenvalues of A) are $\lambda = 1, 3, 9$. We now find the eigenvectors of A corresponding to these eigenvalues.

For $\lambda = 1$ we want a non-zero vector in the kernel of $I - A = \begin{bmatrix} 0 & 2 & 4 \\ 0 & 2 & 12 \\ 0 & 0 & 8 \end{bmatrix}$. This leads to the

system for x, y, z

$$2y + 4z = 0, \quad 2y + 12z = 0, \quad 8z = 0.$$

We want any non-zero solution and x = 1, y = z = 0 works. Thus we get the eigenvector

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

For $\lambda = 3$ we want a non-zero vector in the kernel of $I - 3A = \begin{bmatrix} -2 & 2 & 4 \\ 0 & 0 & 12 \\ 0 & 0 & 6 \end{bmatrix}$. This leads to the

 system

for $\lambda = 1$.

$$-2x + 2y + 4z = 0, \quad 12z = 0, \quad 4x = 0$$

A non-zero solution to this is x = y = 1, z = 0, which gives the eigenvector

$$v_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

for $\lambda = 3$.

For For $\lambda = 9$ we want a non-zero vector in the kernel of $I - 9A = \begin{bmatrix} -8 & 2 & 4 \\ 0 & -6 & 12 \\ 0 & 0 & 0 \end{bmatrix}$. This leads

to the system

$$-8x + 2y + 4z = 0, \quad -6x + 12y = 0, \quad 0 = 0$$

A non-zero solution is x = 1, y = 2, z = 1, which gives the eigenvector

$$v_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$

However we are not done. This gives the eigenvectors of the matrix A, but we are looking for the eigenvectors of the linear operator T.

For $\lambda = 1$ the element for \mathcal{P}_3 corresponding to v_1 is $p_1 = 1$, for $\lambda = 3$ the element of \mathcal{P}_3 corresponding to v_2 is 1 + x and for $\lambda = 9$ the element corresponding to v_3 is $1 + 2x + x^2 = (1 + x^2)$. In summary the eigenvalues of T are $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 9$ with corresponding eigenvectors

$$p_1(x) = 1$$
, $p_2(x) = 1 + x$, $p_3(x) = 1 + 2x + x^2 = (1 + x)^2$.

CHECK: We just compute

$$Tp_1(x) = p_1(3x+2) = 1 = 1p_1(x),$$

$$Tp_2(x) = p_2(3x+2) = 3x+2+1 = 3(x+1) = 3p_2(x),$$

$$Tp_3(x) = p_3(3x+2) = (3x+2+1)^2 = (3(x+1))^2 = 9(x+1)^2 = 9p_2(x)$$

(4) (10 points) Show directly from the definitions that a linear map $T: V \to W$ between finite dimensional vector spaces is injective if and only it its adjoint $T^*: W^* \to V^*$ is surjective.

Solution 1: First assume that T^* is surjective. Then to show T is injective it is enough to show that ker $T = \{0\}$. That is it is enough to show that Tv = 0 implies v = 0. Let $f \in V^*$. As T^* is surjective there is a $g \in W^*$ with $f = T^*g$. Therefore

$$\langle v, f \rangle = \langle v, T^*g \rangle = \langle Tv, g \rangle = \langle 0, g \rangle = 0.$$

This holds for all $f \in V^*$ so v = 0. This show ker $T = \{0\}$ and thus that T is injective.

Conversely assume that T is injective. This implies that ker $T = \{0\}$. If Image T^* is not all of V^* then, Image T^* is a proper subspace of V^* and so there is some $f_0 \notin$ Image T^* . But there we can separate f_0 from the subspace Image T^* by an evaluation. That is there is a $v_0 \in V$ with $\langle v_0, f_0 \rangle = f_0(v_0) = 1$ and $\langle v_0, f_0 \rangle = f_0(v_0) = 0$ for all $f \in$ Image T^* . If $g \in W^*$ then $T^*g \in$ Image T^* and thus

$$0 = \langle v_0, T^*g \rangle = \langle Tv_0, g \rangle.$$

Thus $\langle Tv_0, g \rangle = 0$ For all $g \in W^*$. This implies $Tv_0 = 0$. But $\langle v_0, f_0 \rangle = 1$ implies that $v_0 \neq 0$. This contradicts that ker $T = \{0\}$. Thus T^* is surjective.

Solution 2: (This is due to Wally, though others had an equivalent but slightly less elegant version of the some proof.)

Let $\dim V = n$. Then

T

is injective
$$\iff$$
 nullity $(T) = 0$
 \iff rank $(T) = n$ (by rank plus nullity theorem)
 \iff rank $(T^*) = n$ (as rank $(T) =$ rank (T^*))
 \iff dim Image $(T^*) = n$
 \iff Image $(T^*) = V^*$ (as dim $V^* =$ dim $V = n$)
 \iff T^* in surjective.

Remark: What I had in mind with the phrase "directly from the definitions" was that I did not want you to use that $\ker(T)^{\perp} = \operatorname{Image}(T^*)$ which makes the proof a one liner (as $\ker(T)^{\perp} = \operatorname{Image}(T^*) = V^*$ if and only if $\ker(T) = \{0\}$). I Should have been more explicit about what could and could not be used.

(5) (10 points) Show that if a linear operator $T: V \to V$ has eigenvectors v_1, v_2, v_3 with distinct eigenvalues, $\lambda_1, \lambda_2, \lambda_3$, then v_1, v_2, v_3 are linearly independent.

Solution: Let $c_1, c_2, c_3 \in \mathbf{F}$ be scalars such that

(1)
$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0.$$

As v_1, v_2, v_3 are eigenvectors we have

(2)
$$Tv_1 = \lambda_1 v_1, \quad Tv_2 = \lambda_2 v_2, \quad Tv_3 = \lambda_3 v_3.$$

Now apply T to (1) and use (2)

(3)
$$0 = T0 = c_1 T v_1 + c_2 T v_2 + c_3 T v_3 = c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + c_3 \lambda_3 v_3.$$

Multiply (1) by λ_2 .

(4)

$$c_1\lambda_3v_1 + c_2\lambda_3v_2 + c_3\lambda_3v_3 = 0$$

If (4) is subtracted from (3) the v_3 term cancels out and we are left with

$$c_1(\lambda_3 - \lambda_1)v_1 + c_2(\lambda_3 - \lambda_2)v_2 = 0$$

Now do the same trick again. Applying T to both sides of (5) and using (2) gives

 $c_1(\lambda_3 - \lambda_1)\lambda_1v_1 + c_2(\lambda_3 - \lambda_2)\lambda_2v_2 = 0.$

Multiplying (5) by λ_2 gives

$$c_1(\lambda_3 - \lambda_1)\lambda_2v_1 + c_2(\lambda_3 - \lambda_2)\lambda_2v_2 = 0.$$

Subtracting these gives

$$c_1(\lambda_3 - \lambda_1)(\lambda_2 - \lambda_1)v_1 = 0.$$

As $v_1 \neq 0$ (as it is an eigenvector) and $\lambda_1, \lambda_2, \lambda_3$ are distinct this implies $c_1 = 0$. Using $c_1 = 0$ in (5) gives

$$c_2(\lambda_3 - \lambda_2)v_2 = 0.$$

This implies $c_2 = 0$. Now using $c_1 = c_2 = 0$ in (1) implies $c_3 = 0$. Thus we have shown that whenever (1) holds that $c_1 = c_2 = c_3 = 0$. Therefore v_1, v_2, v_3 are linearly independent. done.

(6) (10 points) Let V be a finite dimensional vector space and W a subspace of V and let $v \in V$ with $v \notin W$. Let $S: W \to U$ be a linear map and $u \in U$. Show that there is a linear map $T: V \to U$ that extends S and with Tv = u.

Solution: Let $k = \dim W$ and $n = \dim V$. Choose a basis v_1, v_2, \ldots, v_k of W. Then $v \notin W =$ $\operatorname{Span}\{v_1,\ldots,v_k\}$ implies that $\{v_1,\ldots,v_k,v\}$ is linearly independent. So let $v_{k+1}=v$ and extend the linearly independent set $v_1, \ldots, v_k, v_{k+1}$ to a basis v_1, \ldots, v_n of V. By the basic existence theorem for linear maps there is a linear map $T: V \to U$ such that

$$Tv_{i} = \begin{cases} Sv_{i}, & 1 \le i \le k; \\ u, & i = k + 1; \\ 0, & k + 2 \le i \le n. \end{cases}$$

Then $Tv_i = Sv_i$ for $1 \le i \le k$ and thus $T|_W$ and S agree on a basis of W. Therefore $T|_W = S$ and thus T extends S. Also $Tv = Tv_{k+1} = u$. done.

(7) (10 points) Let V be a vector space and $P: V \to V$ a linear map with $P^2 = P$. Show that

$$V = \ker(P) \oplus \operatorname{Image}(P)$$

Solution: We need to show that $\ker(P) + \operatorname{Image}(P) = V$ and $\ker(P) \cap \operatorname{Image}(P) = \{0\}$. Note for any $v \in V$ that

$$P(v - Pv) = Pv - P^2v = Pv - Pv = 0$$

as $P^2 = P$. Thus

$$(v - Pv) \in \ker(P)$$
 for all $v \in V$.

Now for any $v \in V$

$$v = (v - Pv) + Pv.$$

Clearly $Pv \in \text{Image}(P)$ and we have just seen $(v - Pv) \in \text{ker}(V)$. Thus every element of V is a sum of an element of $\ker(P)$ and an element of $\operatorname{Image}(P)$, whence $V = \ker(P) + \operatorname{Image}(P)$.

It remains to show that $\ker(P) \cap \operatorname{Image}(P) = \{0\}$. Let $v \in \ker(P) \cap \operatorname{Image}(P)$. Then Pv = 0 as $v \in \ker(P)$. As $v \in \operatorname{Image}(P)$ there a $v' \in V$ with v = Pv'. But then, using $P^2 = P$ and Pv = 0,

$$v = Pv' = P^2v' = PPv' = Pv = 0.$$

Thus if $v \in \ker(P) \cap \operatorname{Image}(P)$, then v = 0. Therefore $\ker(P) \cap \operatorname{Image}(P) = \{0\}$. done. (8) (10 points) Let V be a finite dimensional vector space and $v_1, v_2, v \in V$ such that for all $f \in V^*$

$$f(v_1) = f(v_2) = 0$$
 implies $f(v) = 0$.

Show that v is a linear combination of v_1 and v_2 .

Solution 1: We wish to show that $v \in \text{Span}\{v_1, v_2\}$. Assume, toward a contradiction, that $v \notin \text{Span}\{v_1, v_2\}$. Then as $\text{Span}\{v_1, v_2\}$ is a subspace of V there is a linear functional $f \in V^*$ that separates v from Span $\{v_1, v_2\}$. That is f(v) = 1, but f(w) = 0 for all $w \in \text{Span}\{v_1, v_2\}$. As $v_1, v_2 \in \text{Span}\{v_1, v_2\}$ we have

$$f(v_1) = f(v_2) = 0$$
, but $f(v) = 1$.

This clearly contradicts our assumption that $f(v_1) = f(v_2) = 0$ implies f(v) = 0 and we are <u>done</u>.

Solution 2: The hypothesis is that f(v) = 0 for any $f \in V^*$ with $f(v_1) = f(v_2) = 0$. But the set of $f \in V^*$ with $f(v_1) = f(v_2) = 0$ is $\{v_1, v_2\}^{\perp}$. Therefore the hypothesis can be restated as f(v) = 0 for all $f \in \{v_1, v_2\}^{\perp}$. But this is just the definition of $v \in (\{v_1, v_2\}^{\perp})^{\circ}$. So we have

$$v \in \left(\{v_1, v_2\}^{\perp}\right)^{\circ} = \operatorname{Span}\{v_1, v_2\}$$

as $(S^{\perp})^{\circ} = \operatorname{Span}(S)$ for any non-empety subset S of V.

(9) (10 points) Let $A \in M_{3\times 3}(\mathbf{R})$ be a matrix with characteristic polynomial $x^3 - x$. Then find a diagonal matrix similar to A.

Solution: (This is basically due to Mindy, and is a bit more informative than what I did.) Note that char_A(x) = $x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1)$. Thus the eigenvalues of A are -1, 0, 1. Let v_1 be an eigenvector for $\lambda = -1$, v_2 an eigenvector for $\lambda = 0$ and v_3 an eigenvector for $\lambda = 3$. As -1, 0, 1 are distinct, the eigenvectors v_1, v_2, v_3 are linearly indepent. Let $P = [v_1, v_2, v_3]$ be the matrix with v_1, v_2, v_3 as columns. Then we have a theorem that says that

$$P^{-1}AP = \operatorname{diag}(-1, 0, 1) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

This shows that A is similar to diag(-1, 0, 1)

done.

done.