Show your work to get credit. An answer with no work will not get credit.
(1) (15 points) Define the following:
(a) A linear map $T: V \rightarrow V$ is diagonalizable (where V is a finite dimensional vector space).

There is a basis v_{1}, \ldots, v_{n} of V consisting of eigenvectors of T. Or: There is a basis $\mathcal{V}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that the matrix $[T]_{\mathcal{V}}$ is a diagonal matrix.
(b) The adjoint of a linear map $S: V \rightarrow W$ between finite dimensional vector spaces V and W.

The adjoint is the linear map $S^{*}: W^{*} \rightarrow V^{*}$ given by

$$
S^{*} g=g \circ S
$$

(Here \circ is function composition so that if $v \in V$ and $g \in W^{*}$ then $S^{*} g=g \circ S$ is given by $S^{*} g(v)=g(S v)$.
(c) eigenvalues and eigenvectors of a linear map. (Be sure to be precise about the range and domain).

Eigenvalues and vectors are only defined for linear maps $T: V \rightarrow V$ (that is the range and domain are the same). The scalar $\lambda \in \mathbf{F}$ is an eigenvalue iff there is a non-zero vector $v \in V$ such that $T v=\lambda v$. The vector $v \in V$ is an eigenvector iff it is not the zero vector and $T v=\lambda v$ for some scalar $\lambda \in \mathbf{F}$.
(d) The determinant of a linear operator $T: V \rightarrow V$ on a vector space.

Let $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ be any basis of V and $[T]_{\mathcal{V}}$ the matrix of T with respect to this basis. Then

$$
\operatorname{det} T=\operatorname{det}[T]_{\mathcal{V}}
$$

(This is independent of the choice of the basis \mathcal{V} if V.)
(e) S^{\perp} where S is a non-empty subset of a finite dimensional vector space V.

$$
S^{\perp}=\left\{f \in V^{*}: f(x)=0 \text { for all } f \in V^{*}\right\}
$$

That is W^{\perp} is the set of linear functional that vanish on all elements of S.
(2) (10 points) Find the basis of $\mathbf{R}^{2 *}$ dual to the basis

$$
v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

Solution: We know that the basis of $\mathbf{F}^{n *}$ dual to a basis v_{1}, \ldots, v_{n} of \mathbf{F}^{n} is made up of the rows of the inverse of the matrix $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ with columns v_{1}, \ldots, v_{n}. In the present case

$$
\left[v_{1}, v_{2}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right] .
$$

The inverse is

$$
\left[v_{1}, v_{2}\right]^{-1}=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]^{-1}=\frac{1}{1 \cdot 5-3 \cdot 2}\left[\begin{array}{cc}
5 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-5 & 3 \\
2 & -1
\end{array}\right]
$$

Therefore the dual basis to v_{1} and v_{2} is

$$
f_{1}=[-5,3], \quad f_{2}=[2,-1]
$$

Or in functional notation

$$
f_{1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=-5 x+3 y, \quad f_{2}\left[\begin{array}{l}
x \\
y
\end{array}\right]=2 x-y .
$$

(3) (15 points) Let \mathcal{P}_{2} be the polynomials of degree ≤ 2 over the real numbers and define a linear map $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ by

$$
T p(x)=p(3 x+2)
$$

Find the eigenvectors and values of T.
Solution: First we find the matrix of T in some basis of \mathcal{P}_{2}. The natural choice is the basis $\mathcal{B}:=\left\{1, x, x^{2}\right\}$. In this basis

$$
T 1=1 \sim\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad T x=3 x+2 \sim\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right], \quad T x^{2}=(3 x+2)^{2}=9 x^{2}+12 x+4 \sim\left[\begin{array}{c}
4 \\
12 \\
9
\end{array}\right] .
$$

The matrix A of T in this basis has these vectors as columns. That is

$$
A:=[T]_{\mathcal{B}}=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 3 & 12 \\
0 & 0 & 9
\end{array}\right] .
$$

Using that the determinant of an upper triangular matrix is the product of the diagonal elemnts we see that the characteristic polynomial of T is

$$
\operatorname{char}_{T}(x)=\operatorname{det}(x I-A)=(x-1)(x-3)(x-9)
$$

and that its roots are 1,3 and 9 . Thus the eigenvalues of T (which are the same as the eigenvaluse of A) are $\lambda=1,3,9$. We now find the eigenvectors of A corresponding to these eigenvalues.
For $\lambda=1$ we want a non-zero vector in the kernel of $I-A=\left[\begin{array}{ccc}0 & 2 & 4 \\ 0 & 2 & 12 \\ 0 & 0 & 8\end{array}\right]$. This leads to the system for x, y, z

$$
2 y+4 z=0, \quad 2 y+12 z=0, \quad 8 z=0 .
$$

We want any non-zero solution and $x=1, y=z=0$ works. Thus we get the eigenvector

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

for $\lambda=1$.
For $\lambda=3$ we want a non-zero vector in the kernel of $I-3 A=\left[\begin{array}{ccc}-2 & 2 & 4 \\ 0 & 0 & 12 \\ 0 & 0 & 6\end{array}\right]$. This leads to the system

$$
-2 x+2 y+4 z=0, \quad 12 z=0, \quad 4 x=0 .
$$

A non-zero solution to this is $x=y=1, z=0$, which gives the eigenvector

$$
v_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

for $\lambda=3$.
For For $\lambda=9$ we want a non-zero vector in the kernel of $I-9 A=\left[\begin{array}{ccc}-8 & 2 & 4 \\ 0 & -6 & 12 \\ 0 & 0 & 0\end{array}\right]$. This leads to the system

$$
-8 x+2 y+4 z=0, \quad-6 x+12 y=0, \quad 0=0 .
$$

A non-zero solution is $x=1, y=2, z=1$, which gives the eigenvector

$$
v_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
$$

However we are not done. This gives the eigenvectors of the matrix A, but we are looking for the eigenvectors of the linear operator T.

For $\lambda=1$ the element for \mathcal{P}_{3} corresponding to v_{1} is $p_{1}=1$, for $\lambda=3$ the element of \mathcal{P}_{3} corresponding to v_{2} is $1+x$ and for $\lambda=9$ the element corresponding to v_{3} is $1+2 x+x^{2}=\left(1+x^{2}\right)$. In summary the eigenvalues of T are $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=9$ with cooresponding eigenvectors

$$
p_{1}(x)=1, \quad p_{2}(x)=1+x, \quad p_{3}(x)=1+2 x+x^{2}=(1+x)^{2} .
$$

Check: We just compute

$$
\begin{aligned}
& T p_{1}(x)=p_{1}(3 x+2)=1=1 p_{1}(x) \\
& T p_{2}(x)=p_{2}(3 x+2)=3 x+2+1=3(x+1)=3 p_{2}(x) \\
& T p_{3}(x)=p_{3}(3 x+2)=(3 x+2+1)^{2}=(3(x+1))^{2}=9(x+1)^{2}=9 p_{2}(x)
\end{aligned}
$$

(4) (10 points) Show directly from the definitions that a linear map $T: V \rightarrow W$ between finite dimensional vector spaces is injective if and only it its adjoint $T^{*}: W^{*} \rightarrow V^{*}$ is surjective.

Solution 1: First assume that T^{*} is surjective. Then to show T is injective it is enough to show that $\operatorname{ker} T=\{0\}$. That is it is enough to show that $T v=0$ implies $v=0$. Let $f \in V^{*}$. As T^{*} is surjective there is a $g \in W^{*}$ with $f=T^{*} g$. Therefore

$$
\langle v, f\rangle=\left\langle v, T^{*} g\right\rangle=\langle T v, g\rangle=\langle 0, g\rangle=0 .
$$

This holds for all $f \in V^{*}$ so $v=0$. This show $\operatorname{ker} T=\{0\}$ and thus that T is injective.
Conversely assume that T is injective. This implies that $\operatorname{ker} T=\{0\}$. If Image T^{*} is not all of V^{*} then, Image T^{*} is a proper subspace of V^{*} and so there is some $f_{0} \notin$ Image T^{*}. But there we can separate f_{0} from the subspace Image T^{*} by an evaluation. That is there is a $v_{0} \in V$ with $\left\langle v_{0}, f_{0}\right\rangle=f_{0}\left(v_{0}\right)=1$ and $\left\langle v_{0}, f_{0}\right\rangle=f_{0}\left(v_{0}\right)=0$ for all $f \in \operatorname{Image} T^{*}$. If $g \in W^{*}$ then $T^{*} g \in \operatorname{Image} T^{*}$ and thus

$$
0=\left\langle v_{0}, T^{*} g\right\rangle=\left\langle T v_{0}, g\right\rangle .
$$

Thus $\left\langle T v_{0}, g\right\rangle=0$ For all $g \in W^{*}$. This implies $T v_{0}=0$. But $\left\langle v_{0}, f_{0}\right\rangle=1$ implies that $v_{0} \neq 0$. This contradicts that $\operatorname{ker} T=\{0\}$. Thus T^{*} is surjective.
done.
Solution 2: (This is due to Wally, though others had an equivalent but slightly less elegant version of the some proof.)

Let $\operatorname{dim} V=n$. Then

$$
\begin{aligned}
T \text { is injective } & \Longleftrightarrow \operatorname{nullity}(T)=0 & & \\
& \Longleftrightarrow \operatorname{rank}(T)=n & & \text { (by } \operatorname{rank} \text { plus nullity theo } \\
& \Longleftrightarrow \operatorname{rank}\left(T^{*}\right)=n & & \text { (as } \left.\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)\right) \\
& \Longleftrightarrow \operatorname{dim} \operatorname{Image}\left(T^{*}\right)=n & & \\
& \Longleftrightarrow \operatorname{Image}\left(T^{*}\right)=V^{*} & & \text { (as } \left.\operatorname{dim} V^{*}=\operatorname{dim} V=n\right) \\
& \Longleftrightarrow T^{*} \text { in surjective. } & &
\end{aligned}
$$

Remark: What I had in mind with the phrase "directly from the definitions" was that I did not want you to use that $\operatorname{ker}(T)^{\perp}=\operatorname{Image}\left(T^{*}\right)$ which makes the proof a one liner (as $\operatorname{ker}(T)^{\perp}=$ Image $\left(T^{*}\right)=V^{*}$ if and only if $\operatorname{ker}(T)=\{0\}$). I Should have been more explicit about what could and could not be used.
(5) (10 points) Show that if a linear operator $T: V \rightarrow V$ has eigenvectors v_{1}, v_{2}, v_{3} with distinct eigenvalues, $\lambda_{1}, \lambda_{2}, \lambda_{3}$, then v_{1}, v_{2}, v_{3} are linearly independent.

Solution: Let $c_{1}, c_{2}, c_{3} \in \mathbf{F}$ be scalars such that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{1}
\end{equation*}
$$

As v_{1}, v_{2}, v_{3} are eigenvectors we have

$$
\begin{equation*}
T v_{1}=\lambda_{1} v_{1}, \quad T v_{2}=\lambda_{2} v_{2}, \quad T v_{3}=\lambda_{3} v_{3} \tag{2}
\end{equation*}
$$

Now apply T to (1) and use (2)

$$
\begin{equation*}
0=T 0=c_{1} T v_{1}+c_{2} T v_{2}+c_{3} T v_{3}=c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+c_{3} \lambda_{3} v_{3} . \tag{3}
\end{equation*}
$$

Multiply (1) by λ_{2}.

$$
\begin{equation*}
c_{1} \lambda_{3} v_{1}+c_{2} \lambda_{3} v_{2}+c_{3} \lambda_{3} v_{3}=0 \tag{4}
\end{equation*}
$$

If (4) is subtracted from (3) the v_{3} term cancels out and we are left with

$$
\begin{equation*}
c_{1}\left(\lambda_{3}-\lambda_{1}\right) v_{1}+c_{2}\left(\lambda_{3}-\lambda_{2}\right) v_{2}=0 \tag{5}
\end{equation*}
$$

Now do the same trick again. Applying T to both sides of (5) and using (2) gives

$$
c_{1}\left(\lambda_{3}-\lambda_{1}\right) \lambda_{1} v_{1}+c_{2}\left(\lambda_{3}-\lambda_{2}\right) \lambda_{2} v_{2}=0 .
$$

Multiplying (5) by λ_{2} gives

$$
c_{1}\left(\lambda_{3}-\lambda_{1}\right) \lambda_{2} v_{1}+c_{2}\left(\lambda_{3}-\lambda_{2}\right) \lambda_{2} v_{2}=0 .
$$

Subtracting these gives

$$
c_{1}\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{1}\right) v_{1}=0 .
$$

As $v_{1} \neq 0$ (as it is an eigenvector) and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct this implies $c_{1}=0$. Using $c_{1}=0$ in (5) gives

$$
c_{2}\left(\lambda_{3}-\lambda_{2}\right) v_{2}=0
$$

This implies $c_{2}=0$. Now using $c_{1}=c_{2}=0$ in (1) implies $c_{3}=0$. Thus we have shown that whenever (1) holds that $c_{1}=c_{2}=c_{3}=0$. Therefore v_{1}, v_{2}, v_{3} are linearly independent. done.
(6) (10 points) Let V be a finite dimensional vector space and W a subspace of V and let $v \in V$ with $v \notin W$. Let $S: W \rightarrow U$ be a linear map and $u \in U$. Show that there is a linear map $T: V \rightarrow U$ that extends S and with $T v=u$.

Solution: Let $k=\operatorname{dim} W$ and $n=\operatorname{dim} V$. Choose a basis $v_{1}, v_{2}, \ldots, v_{k}$ of W. Then $v \notin W=$ Span $\left\{v_{1}, \ldots, v_{k}\right\}$ implies that $\left\{v_{1}, \ldots, v_{k}, v\right\}$ is linearly independent. So let $v_{k+1}=v$ and extend the linearly independent set $v_{1}, \ldots, v_{k}, v_{k+1}$ to a basis v_{1}, \ldots, v_{n} of V. By the basic existence theorem for linear maps there is a linear map $T: V \rightarrow U$ such that

$$
T v_{i}= \begin{cases}S v_{i}, & 1 \leq i \leq k \\ u, & i=k+1 \\ 0, & k+2 \leq i \leq n\end{cases}
$$

Then $T v_{i}=S v_{i}$ for $1 \leq i \leq k$ and thus $\left.T\right|_{W}$ and S agree on a basis of W. Therefore $\left.T\right|_{W}=S$ and thus T extends S. Also $T v=T v_{k+1}=u$.
done.
(7) (10 points) Let V be a vector space and $P: V \rightarrow V$ a linear map with $P^{2}=P$. Show that

$$
V=\operatorname{ker}(P) \oplus \operatorname{Image}(P)
$$

Solution: We need to show that $\operatorname{ker}(P)+\operatorname{Image}(P)=V$ and $\operatorname{ker}(P) \cap \operatorname{Image}(P)=\{0\}$. Note for any $v \in V$ that

$$
P(v-P v)=P v-P^{2} v=P v-P v=0
$$

as $P^{2}=P$. Thus

$$
(v-P v) \in \operatorname{ker}(P) \quad \text { for all } \quad v \in V .
$$

Now for any $v \in V$

$$
v=(v-P v)+P v
$$

Clearly $P v \in \operatorname{Image}(P)$ and we have just seen $(v-P v) \in \operatorname{ker}(V)$. Thus every element of V is a sum of an element of $\operatorname{ker}(P)$ and an element of $\operatorname{Image}(P)$, whence $V=\operatorname{ker}(P)+\operatorname{Image}(P)$.

It remains to show that $\operatorname{ker}(P) \cap \operatorname{Image}(P)=\{0\}$. Let $v \in \operatorname{ker}(P) \cap \operatorname{Image}(P)$. Then $P v=0$ as $v \in \operatorname{ker}(P)$. As $v \in \operatorname{Image}(P)$ there a $v^{\prime} \in V$ with $v=P v^{\prime}$. But then, using $P^{2}=P$ and $P v=0$,

$$
v=P v^{\prime}=P^{2} v^{\prime}=P P v^{\prime}=P v=0 .
$$

Thus if $v \in \operatorname{ker}(P) \cap$ Image (P), then $v=0$. Therefore $\operatorname{ker}(P) \cap \operatorname{Image}(P)=\{0\}$.
done.
(8) (10 points) Let V be a finite dimensional vector space and $v_{1}, v_{2}, v \in V$ such that for all $f \in V^{*}$

$$
f\left(v_{1}\right)=f\left(v_{2}\right)=0 \quad \text { implies } \quad f(v)=0 .
$$

Show that v is a linear combination of v_{1} and v_{2}.
Solution 1: We wish to show that $v \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Assume, toward a contradiction, that $v \notin \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Then as $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ is a subspace of V there is a linear functional $f \in V^{*}$
that separates v from $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. That is $f(v)=1$, but $f(w)=0$ for all $w \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. As $v_{1}, v_{2} \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$ we have

$$
f\left(v_{1}\right)=f\left(v_{2}\right)=0, \quad \text { but } \quad f(v)=1 .
$$

This clearly contradicts our assumption that $f\left(v_{1}\right)=f\left(v_{2}\right)=0$ implies $f(v)=0$ and we are done.
Solution 2: The hypothesis is that $f(v)=0$ for any $f \in V^{*}$ with $f\left(v_{1}\right)=f\left(v_{2}\right)=0$. But the set of $f \in V^{*}$ with $f\left(v_{1}\right)=f\left(v_{2}\right)=0$ is $\left\{v_{1}, v_{2}\right\}^{\perp}$. Therefore the hypothesis can be restated as $f(v)=0$ for all $f \in\left\{v_{1}, v_{2}\right\}^{\perp}$. But this is just the definition of $v \in\left(\left\{v_{1}, v_{2}\right\}^{\perp}\right)^{\circ}$. So we have

$$
v \in\left(\left\{v_{1}, v_{2}\right\}^{\perp}\right)^{\circ}=\operatorname{Span}\left\{v_{1}, v_{2}\right\}
$$

as $\left(S^{\perp}\right)^{\circ}=\operatorname{Span}(S)$ for any non-empety subset S of V.
done.
(9) (10 points) Let $A \in M_{3 \times 3}(\mathbf{R})$ be a matrix with characteristic polynomial $x^{3}-x$. Then find a diagonal matrix similar to A.

Solution: (This is basically due to Mindy, and is a bit more informative than what I did.) Note that $\operatorname{char}_{A}(x)=x^{3}-x=x\left(x^{2}-1\right)=x(x-1)(x+1)$. Thus the eigenvalues of A are $-1,0,1$. Let v_{1} be an eigenvector for $\lambda=-1, v_{2}$ an eigenvector for $\lambda=0$ and v_{3} an eigenvector for $\lambda=3$. As $-1,0,1$ are distinct, the eigenvectors v_{1}, v_{2}, v_{3} are linearly indepent. Let $P=\left[v_{1}, v_{2}, v_{3}\right]$ be the matrix with v_{1}, v_{2}, v_{3} as columns. Then we have a theorem that says that

$$
P^{-1} A P=\operatorname{diag}(-1,0,1)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

This shows that A is similar to $\operatorname{diag}(-1,0,1)$
done.

