(1) (15 points) Define the following:

(a) A linear map \(T : V \to V \) is \textit{diagonalizable} (where \(V \) is a finite dimensional vector space). There is a basis \(v_1, \ldots, v_n \) of \(V \) consisting of eigenvectors of \(T \). \textbf{Or}: There is a basis \(\mathcal{V} = \{v_1, \ldots, v_n\} \) of \(V \) such that the matrix \([T]_{\mathcal{V}}\) is a diagonal matrix.

(b) The \textit{adjoint} of a linear map \(S : V \to W \) between finite dimensional vector spaces \(V \) and \(W \).

The adjoint is the linear map \(S^* : W^* \to V^* \) given by

\[
S^* g = g \circ S.
\]

(Here \(\circ \) is function composition so that if \(v \in V \) and \(g \in W^* \) then \(S^* g = g(Sv) \).)

(c) \textit{Eigenvalues} and \textit{eigenvectors} of a linear map. (Be sure to be precise about the range and domain).

Eigenvalues and vectors are only defined for linear maps \(T : V \to V \) (that is the range and domain are the same). The scalar \(\lambda \in F \) is an eigenvalue iff there is a non-zero vector \(v \in V \) such that \(Tv = \lambda v \). The vector \(v \in V \) is an eigenvector iff it is not the zero vector and \(Tv = \lambda v \) for some scalar \(\lambda \in F \).

(d) The \textit{determinant} of a linear operator \(T : V \to V \) on a vector space.

Let \(\mathcal{V} = \{v_1, \ldots, v_n\} \) be any basis of \(V \) and \([T]_{\mathcal{V}}\) the matrix of \(T \) with respect to this basis. Then

\[
\det T = \det[T]_{\mathcal{V}}.
\]

(This is independent of the choice of the basis \(\mathcal{V} \) if \(V \).)

(e) \(S^\perp \) where \(S \) is a non-empty subset of a finite dimensional vector space \(V \).

\[
S^\perp = \{f \in V^* : f(x) = 0 \text{ for all } f \in V^*\}.
\]

That is \(W^\perp \) is the set of linear functional that vanish on all elements of \(S \).

(2) (10 points) Find the basis of \(\mathbb{R}^{2*} \) dual to the basis

\[
v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}
\]

\textbf{Solution:} We know that the basis of \(\mathbb{F}^{n*} \) dual to a basis \(v_1, \ldots, v_n \) of \(\mathbb{F}^n \) is made up of the rows of the inverse of the matrix \([v_1, v_2, \ldots, v_n]\) with columns \(v_1, \ldots, v_n \). In the present case

\[
[v_1, v_2] = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}.
\]

The inverse is

\[
[v_1, v_2]^{-1} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}.
\]

Therefore the dual basis to \(v_1 \) and \(v_2 \) is

\[
f_1 = [-5, 3], \quad f_2 = [2, -1].
\]

Or in functional notation

\[
f_1 \begin{bmatrix} x \\ y \end{bmatrix} = -5x + 3y, \quad f_2 \begin{bmatrix} x \\ y \end{bmatrix} = 2x - y.
\]
(3) (15 points) Let \mathcal{P}_2 be the polynomials of degree ≤ 2 over the real numbers and define a linear map $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$Tp(x) = p(3x + 2).$$

Find the eigenvectors and values of T.

Solution: First we find the matrix of T in some basis of \mathcal{P}_2. The natural choice is the basis $B := \{1, x, x^2\}$. In this basis

$$T 1 = 1 \sim \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ T x = 3x + 2 \sim \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \ T x^2 = (3x + 2)^2 = 9x^2 + 12x + 4 \sim \begin{bmatrix} 4 \\ 12 \\ 9 \end{bmatrix}.$$

The matrix A of T in this basis has these vectors as columns. That is

$$A := [T]_B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 3 & 12 \\ 0 & 0 & 9 \end{bmatrix}.$$

Using that the determinant of an upper triangular matrix is the product of the diagonal elements we see that the characteristic polynomial of T is

$$\text{char}_T(x) = \det (xI - A) = (x - 1)(x - 3)(x - 9).$$

and that its roots are 1, 3 and 9. Thus the eigenvalues of T (which are the same as the eigenvalues of A) are $\lambda = 1, 3, 9$. We now find the eigenvectors of A corresponding to these eigenvalues.

For $\lambda = 1$ we want a non-zero vector in the kernel of $I - A = \begin{bmatrix} 0 & 2 & 4 \\ 0 & 2 & 12 \\ 0 & 0 & 8 \end{bmatrix}$. This leads to the system for x, y, z

$$2y + 4z = 0, \ 2y + 12z = 0, \ 8z = 0.$$

We want any non-zero solution and $x = 1, y = z = 0$ works. Thus we get the eigenvector

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

for $\lambda = 1$.

For $\lambda = 3$ we want a non-zero vector in the kernel of $I - 3A = \begin{bmatrix} -2 & 2 & 4 \\ 0 & 0 & 12 \\ 0 & 0 & 6 \end{bmatrix}$. This leads to the system

$$-2x + 2y + 4z = 0, \ 12z = 0, \ 4x = 0.$$

A non-zero solution to this is $x = y = 1, z = 0$, which gives the eigenvector

$$v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

for $\lambda = 3$.

For $\lambda = 9$ we want a non-zero vector in the kernel of $I - 9A = \begin{bmatrix} -8 & 2 & 4 \\ 0 & -6 & 12 \\ 0 & 0 & 0 \end{bmatrix}$. This leads to the system

$$-8x + 2y + 4z = 0, \ -6x + 12y = 0, \ 0 = 0.$$

A non-zero solution is $x = 1, y = 2, z = 1$, which gives the eigenvector

$$v_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

However we are not done. This gives the eigenvectors of the matrix A, but we are looking for the eigenvectors of the linear operator T.

For $\lambda = 1$ the element for \mathcal{P}_3 corresponding to v_1 is $p_1 = 1$, for $\lambda = 3$ the element of \mathcal{P}_3 corresponding to v_2 is $1 + x$ and for $\lambda = 9$ the element corresponding to v_3 is $1 + 2x + x^2 = (1 + x)^2$.

In summary the eigenvalues of T are $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 9$ with corresponding eigenvectors

$$
p_1(x) = 1, \quad p_2(x) = 1 + x, \quad p_3(x) = 1 + 2x + x^2 = (1 + x)^2.
$$

CHECK: We just compute

$$
Tp_1(x) = p_1(3x + 2) = 1 = 1p_1(x),
$$

$$
Tp_2(x) = p_2(3x + 2) = 3x + 2 + 1 = 3(x + 1) = 3p_2(x),
$$

$$
Tp_3(x) = p_3(3x + 2) = (3x + 2 + 1)^2 = (3(x + 1))^2 = 9(x + 1)^2 = 9p_2(x).
$$

(4) (10 points) Show directly from the definitions that a linear map $T: V \rightarrow W$ between finite dimensional vector spaces is injective if and only it its adjoint $T^*: W^* \rightarrow V^*$ is surjective.

Solution 1: First assume that T^* is surjective. Then to show T is injective it is enough to show that $\ker T = \{0\}$. That is it is enough to show that $Tv = 0$ implies $v = 0$. Let $f \in V^*$. As T^* is surjective there is a $g \in W^*$ with $f = T^*g$. Therefore

$$
\langle f, v \rangle = \langle T^*g, v \rangle = \langle Tv, g \rangle = \langle 0, g \rangle = 0.
$$

This holds for all $f \in V^*$ so $v = 0$. This show $\ker T = \{0\}$ and thus that T is injective.

Conversely assume that T is injective. This implies that $\ker T = \{0\}$. If $\text{Image} T^*$ is not all of V^* then, $\text{Image} T^*$ is a proper subspace of V^* and so there is some $f_0 \notin \text{Image} T^*$. But there we can separate f_0 from the subspace $\text{Image} T^*$ by an evaluation. That is there is a $v_0 \in V$ with $\langle v_0, f_0 \rangle = f_0(v_0) = 1$ and $\langle v_0, f_0 \rangle = f_0(v_0) = 0$ for all $f \in \text{Image} T^*$. If $g \in W^*$ then $T^*g \in \text{Image} T^*$ and thus

$$
0 = \langle v_0, T^*g \rangle = \langle Tv_0, g \rangle.
$$

Thus $\langle Tv_0, g \rangle = 0$ for all $g \in W^*$. This implies $Tv_0 = 0$. But $\langle v_0, f_0 \rangle = 1$ implies that $v_0 \neq 0$. This contradicts that $\ker T = \{0\}$. Thus T^* is surjective.

Solution 2: (This is due to Wally, though others had an equivalent but slightly less elegant version of the some proof.)

Let $\dim V = n$. Then

$$T \text{ is injective} \iff \text{nullity}(T) = 0 \iff \text{rank}(T) = n \iff \text{rank}(T^*) = n \iff \dim \text{Image}(T^*) = n \iff \text{Image}(T^*) = V^* \iff \dim V^* = \dim V = n \iff T^* \text{ is surjective}.
$$

Remark: What I had in mind with the phrase “directly from the definitions” was that I did not want you to use that $\ker(T) = \text{Image} T^*$ which makes the proof a one liner (as $\ker(T) = \text{Image} (T^*) = V^*$ if and only if $\ker(T) = \{0\}$). I should have been more explicit about what could and could not be used.

(5) (10 points) Show that if a linear operator $T: V \rightarrow V$ has eigenvectors v_1, v_2, v_3 with distinct eigenvalues, $\lambda_1, \lambda_2, \lambda_3$, then v_1, v_2, v_3 are linearly independent.

Solution: Let $c_1, c_2, c_3 \in \mathbb{F}$ be scalars such that

$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0.
$$

As v_1, v_2, v_3 are eigenvectors we have

$$Tv_1 = \lambda_1 v_1, \quad Tv_2 = \lambda_2 v_2, \quad Tv_3 = \lambda_3 v_3.
$$

Now apply T to (1) and use (2)

$$0 = T0 = c_1Tv_1 + c_2Tv_2 + c_3Tv_3 = c_1\lambda_1 v_1 + c_2\lambda_2 v_2 + c_3\lambda_3 v_3.
$$
Multiply (1) by λ_2.

(4) \[c_1\lambda_3 v_1 + c_2\lambda_3 v_2 + c_3\lambda_3 v_3 = 0 \]

If (4) is subtracted from (3) the v_3 term cancels out and we are left with

(5) \[c_1(\lambda_3 - \lambda_1)v_1 + c_2(\lambda_3 - \lambda_2)v_2 = 0. \]

Now do the same trick again. Applying T to both sides of (5) and using (2) gives

\[c_1(\lambda_3 - \lambda_1)\lambda_1 v_1 + c_2(\lambda_3 - \lambda_2)\lambda_2 v_2 = 0. \]

Multiplying (5) by λ_2 gives

\[c_1(\lambda_3 - \lambda_1)\lambda_2 v_1 + c_2(\lambda_3 - \lambda_2)\lambda_2 v_2 = 0. \]

Subtracting these gives

\[c_1(\lambda_3 - \lambda_1)(\lambda_2 - \lambda_1)v_1 = 0. \]

As $v_1 \neq 0$ (as it is an eigenvector) and $\lambda_1, \lambda_2, \lambda_3$ are distinct this implies $c_1 = 0$. Using $c_1 = 0$ in (5) gives

\[c_2(\lambda_3 - \lambda_2)v_2 = 0. \]

This implies $c_2 = 0$. Now using $c_1 = c_2 = 0$ in (1) implies $c_3 = 0$. Thus we have shown that whenever (1) holds that $c_1 = c_2 = c_3 = 0$. Therefore v_1, v_2, v_3 are linearly independent. \(\text{done.} \)

(6) (10 points) Let V be a finite dimensional vector space and W a subspace of V and let $v \in V$ with $v \notin W$. Let $S: W \rightarrow U$ be a linear map and $u \in U$. Show that there is a linear map $T: V \rightarrow U$ that extends S and with $Tv = u$.

Solution: Let $k = \dim W$ and $n = \dim V$. Choose a basis v_1, v_2, \ldots, v_k of W. Then $v \notin W = \text{Span}\{v_1, \ldots, v_k\}$ implies that $\{v_1, \ldots, v_k, \{v\}\}$ is linearly independent. So let $v_{k+1} = v$ and extend the linearly independent set $v_1, \ldots, v_k, v_{k+1}$ to a basis v_1, \ldots, v_n of V. By the basic existence theorem for linear maps there is a linear map $T: V \rightarrow U$ such that

\[Tv_i = \begin{cases} Sv_i, & 1 \leq i \leq k; \\ u, & i = k + 1; \\ 0, & k + 2 \leq i \leq n. \end{cases} \]

Then $Tv_i = Sv_i$ for $1 \leq i \leq k$ and thus $T|_W$ and S agree on a basis of W. Therefore $T|_W = S$ and $Tv = Tv_{k+1} = u$. \(\text{done.} \)

(7) (10 points) Let V be a vector space and $P: V \rightarrow V$ a linear map with $P^2 = P$. Show that

\[V = \ker(P) \oplus \text{Image}(P). \]

Solution: We need to show that $\ker(P) + \text{Image}(P) = V$ and $\ker(P) \cap \text{Image}(P) = \{0\}$. Note for any $v \in V$ that

\[P(v - Pv) = Pv - P^2v = Pv - Pv = 0 \]

as $P^2 = P$. Thus

\[(v - Pv) \in \ker(P) \text{ for all } v \in V. \]

Now for any $v \in V$

\[v = (v - Pv) + Pv. \]

Clearly $Pv \in \text{Image}(P)$ and we have just shown $(v - Pv) \in \ker(V)$. Thus every element of V is a sum of an element of $\ker(P)$ and an element of $\text{Image}(P)$, whence $V = \ker(P) \oplus \text{Image}(P)$.

It remains to show that $\ker(P) \cap \text{Image}(P) = \{0\}$. Let $v \in \ker(P) \cap \text{Image}(P)$. Then $Pv = 0$ as $v \in \ker(P)$. As $v \in \text{Image}(P)$ there a $v' \in V$ with $v = Pv'$. But then, using $P^2 = P$ and $Pv = 0$,

\[v = Pv' = P^2v' = PPv' = Pv = 0. \]

Thus if $v \in \ker(P) \cap \text{Image}(P)$, then $v = 0$. Therefore $\ker(P) \cap \text{Image}(P) = \{0\}$. \(\text{done.} \)

(8) (10 points) Let V be a finite dimensional vector space and $v_1, v_2, v \in V$ such that for all $f \in V^*$

\[f(v_1) = f(v_2) = 0 \text{ implies } f(v) = 0. \]

Show that v is a linear combination of v_1 and v_2.

Solution 1: We wish to show that $v \in \text{Span}\{v_1, v_2\}$. Assume, toward a contradiction, that $v \notin \text{Span}\{v_1, v_2\}$. Then as $\text{Span}\{v_1, v_2\}$ is a subspace of V there is a linear functional $f \in V^*$
that separates v from $\text{Span}\{v_1, v_2\}$. That is $f(v) = 1$, but $f(w) = 0$ for all $w \in \text{Span}\{v_1, v_2\}$. As $v_1, v_2 \in \text{Span}\{v_1, v_2\}$ we have

$$f(v_1) = f(v_2) = 0, \quad \text{but} \quad f(v) = 1.$$

This clearly contradicts our assumption that $f(v_1) = f(v_2) = 0$ implies $f(v) = 0$ and we are done.

Solution 2: The hypothesis is that $f(v) = 0$ for any $f \in V^*$ with $f(v_1) = f(v_2) = 0$. But the set of $f \in V^*$ with $f(v_1) = f(v_2) = 0$ is $\{v_1, v_2\}^\perp$. Therefore the hypothesis can be restated as $f(v) = 0$ for all $f \in \{v_1, v_2\}^\perp$. But this is just the definition of $v \in (\{v_1, v_2\}^\perp)^\circ$. So we have

$$v \in (\{v_1, v_2\})^\circ = \text{Span}\{v_1, v_2\}$$

as $(S^\perp)^\circ = \text{Span}(S)$ for any non-empty subset S of V. done.

(9) (10 points) Let $A \in M_{3\times3}(\mathbb{R})$ be a matrix with characteristic polynomial $x^3 - x$. Then find a diagonal matrix similar to A.

Solution: (This is basically due to Mindy, and is a bit more informative than what I did.) Note that $\text{char}_A(x) = x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1)$. Thus the eigenvalues of A are $-1, 0, 1$. Let v_1 be an eigenvector for $\lambda = -1$, v_2 an eigenvector for $\lambda = 0$ and v_3 an eigenvector for $\lambda = 3$. As $-1, 0, 1$ are distinct, the eigenvectors v_1, v_2, v_3 are linearly independent. Let $P = [v_1, v_2, v_3]$ be the matrix with v_1, v_2, v_3 as columns. Then we have a theorem that says that

$$P^{-1}AP = \text{diag}(-1, 0, 1) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

This shows that A is similar to $\text{diag}(-1, 0, 1)$ done.