
Mathematics 700 Test #2 Name: Solution Key
Show your work to get credit. An answer with no work will not get credit.

(1) (15 points) Define the following:
(a) A linear map T : V → V is diagonalizable (where V is a finite dimensional vector

space).

There is a basis v1, . . . , vn of V consisting of eigenvectors of T . Or: There is a basis V =
{v1, . . . , vn} of V such that the matrix [T ]V is a diagonal matrix.

(b) The adjoint of a linear map S : V → W between finite dimensional vector spaces V
and W .

The adjoint is the linear map S∗ : W ∗ → V ∗ given by

S∗g = g ◦ S.

(Here ◦ is function composition so that if v ∈ V and g ∈ W ∗ then S∗g = g ◦ S is given by
S∗g(v) = g(Sv).

(c) eigenvalues and eigenvectors of a linear map. (Be sure to be precise about the
range and domain).

Eigenvalues and vectors are only defined for linear maps T : V → V (that is the range and
domain are the same). The scalar λ ∈ F is an eigenvalue iff there is a non-zero vector v ∈ V

such that Tv = λv. The vector v ∈ V is an eigenvector iff it is not the zero vector and
Tv = λv for some scalar λ ∈ F.

(d) The determinant of a linear operator T : V → V on a vector space.

Let V = {v1, . . . , vn} be any basis of V and [T ]V the matrix of T with respect to this basis.
Then

det T = det[T ]V .

(This is independent of the choice of the basis V if V .)
(e) S⊥ where S is a non-empty subset of a finite dimensional vector space V .

S⊥ = {f ∈ V ∗ : f(x) = 0 for all f ∈ V ∗}.
That is W⊥ is the set of linear functional that vanish on all elements of S.

(2) (10 points) Find the basis of R2∗ dual to the basis

v1 =

[
1
2

]
, v2 =

[
3
5

]

Solution: We know that the basis of Fn∗ dual to a basis v1, . . . , vn of Fn is made up of the
rows of the inverse of the matrix

[
v1, v2, . . . , vn

]
with columns v1, . . . , vn. In the present case

[
v1, v2

]
=

[
1 3
2 5

]
.

The inverse is
[
v1, v2

]−1 =
[
1 3
2 5

]−1

=
1

1 · 5 − 3 · 2
[

5 −3
−2 1

]
=

[−5 3
2 −1

]
.

Therefore the dual basis to v1 and v2 is

f1 =
[−5, 3

]
, f2 =

[
2,−1

]
.

Or in functional notation

f1

[
x
y

]
= −5x + 3y, f2

[
x
y

]
= 2x − y.



(3) (15 points) Let P2 be the polynomials of degree ≤ 2 over the real numbers and define a
linear map T : P2 → P2 by

Tp(x) = p(3x + 2).

Find the eigenvectors and values of T .
Solution: First we find the matrix of T in some basis of P2. The natural choice is the basis

B := {1, x, x2}. In this basis

T1 = 1 ∼

1

0
0


 , Tx = 3x + 2 ∼


2

3
0


 , Tx2 = (3x + 2)2 = 9x2 + 12x + 4 ∼


 4

12
9


 .

The matrix A of T in this basis has these vectors as columns. That is

A :=
[
T

]
B =


1 2 4

0 3 12
0 0 9


 .

Using that the determinant of an upper triangular matrix is the product of the diagonal elemnts
we see that the characteristic polynomial of T is

charT (x) = det (xI − A) = (x − 1)(x − 3)(x − 9).

and that its roots are 1, 3 and 9. Thus the eigenvalues of T (which are the same as the eigenvaluse
of A) are λ = 1, 3, 9. We now find the eigenvectors of A corresponding to these eigenvalues.

For λ = 1 we want a non-zero vector in the kernel of I − A =


0 2 4

0 2 12
0 0 8


 . This leads to the

system for x, y, z

2y + 4z = 0, 2y + 12z = 0, 8z = 0.

We want any non-zero solution and x = 1, y = z = 0 works. Thus we get the eigenvector

v1 =


1

0
0




for λ = 1.

For λ = 3 we want a non-zero vector in the kernel of I − 3A =


−2 2 4

0 0 12
0 0 6


 . This leads to the

system
−2x + 2y + 4z = 0, 12z = 0, 4x = 0.

A non-zero solution to this is x = y = 1, z = 0, which gives the eigenvector

v2 =


1

1
0




for λ = 3.

For For λ = 9 we want a non-zero vector in the kernel of I − 9A =


−8 2 4

0 −6 12
0 0 0


 . This leads

to the system
−8x + 2y + 4z = 0, −6x + 12y = 0, 0 = 0.

A non-zero solution is x = 1, y = 2, z = 1, which gives the eigenvector

v3 =


1

2
1


 .

However we are not done. This gives the eigenvectors of the matrix A, but we are looking for
the eigenvectors of the linear operator T .



For λ = 1 the element for P3 corresponding to v1 is p1 = 1, for λ = 3 the element of P3

corresponding to v2 is 1+x and for λ = 9 the element corresponding to v3 is 1+2x+x2 = (1+x2).
In summary the eigenvalues of T are λ1 = 1, λ2 = 2, λ3 = 9 with cooresponding eigenvectors

p1(x) = 1, p2(x) = 1 + x, p3(x) = 1 + 2x + x2 = (1 + x)2.

Check: We just compute

Tp1(x) = p1(3x + 2) = 1 = 1p1(x),

Tp2(x) = p2(3x + 2) = 3x + 2 + 1 = 3(x + 1) = 3p2(x),

Tp3(x) = p3(3x + 2) = (3x + 2 + 1)2 = (3(x + 1))2 = 9(x + 1)2 = 9p2(x).

(4) (10 points) Show directly from the definitions that a linear map T : V → W between finite
dimensional vector spaces is injective if and only it its adjoint T ∗ : W ∗ → V ∗ is surjective.

Solution 1: First assume that T ∗ is surjective. Then to show T is injective it is enough to show
that kerT = {0}. That is it is enough to show that Tv = 0 implies v = 0. Let f ∈ V ∗. As T ∗ is
surjective there is a g ∈ W ∗ with f = T ∗g. Therefore

〈v, f〉 = 〈v, T ∗g〉 = 〈Tv, g〉 = 〈0, g〉 = 0.

This holds for all f ∈ V ∗ so v = 0. This show kerT = {0} and thus that T is injective.
Conversely assume that T is injective. This implies that kerT = {0}. If Image T ∗ is not all

of V ∗ then, ImageT ∗ is a proper subspace of V ∗ and so there is some f0 /∈ Image T ∗. But there
we can separate f0 from the subspace ImageT ∗ by an evaluation. That is there is a v0 ∈ V with
〈v0, f0〉 = f0(v0) = 1 and 〈v0, f0〉 = f0(v0) = 0 for all f ∈ Image T ∗. If g ∈ W ∗ then T ∗g ∈ Image T ∗
and thus

0 = 〈v0, T
∗g〉 = 〈Tv0, g〉.

Thus 〈Tv0, g〉 = 0 For all g ∈ W ∗. This implies Tv0 = 0. But 〈v0, f0〉 = 1 implies that v0 6= 0.
This contradicts that kerT = {0}. Thus T ∗ is surjective. done.

Solution 2: (This is due to Wally, though others had an equivalent but slightly less elegant
version of the some proof.)

Let dim V = n. Then

T is injective ⇐⇒ nullity(T ) = 0

⇐⇒ rank(T ) = n (by rank plus nullity theorem)

⇐⇒ rank(T ∗) = n (as rank(T ) = rank(T ∗))
⇐⇒ dim Image(T ∗) = n

⇐⇒ Image(T ∗) = V ∗ (as dimV ∗ = dimV = n)

⇐⇒ T ∗ in surjective.

Remark: What I had in mind with the phrase “directly from the definitions” was that I did
not want you to use that ker(T )⊥ = Image(T ∗) which makes the proof a one liner (as ker(T )⊥ =
Image(T ∗) = V ∗ if and only if ker(T ) = {0}). I Should have been more explicit about what could
and could not be used.

(5) (10 points) Show that if a linear operator T : V → V has eigenvectors v1, v2, v3 with distinct
eigenvalues, λ1, λ2, λ3, then v1, v2, v3 are linearly independent.

Solution: Let c1, c2, c3 ∈ F be scalars such that

(1) c1v1 + c2v2 + c3v3 = 0.

As v1, v2, v3 are eigenvectors we have

(2) Tv1 = λ1v1, T v2 = λ2v2, T v3 = λ3v3.

Now apply T to (1) and use (2)

(3) 0 = T0 = c1Tv1 + c2Tv2 + c3Tv3 = c1λ1v1 + c2λ2v2 + c3λ3v3.



Multiply (1) by λ2.

(4) c1λ3v1 + c2λ3v2 + c3λ3v3 = 0

If (4) is subtracted from (3) the v3 term cancels out and we are left with

(5) c1(λ3 − λ1)v1 + c2(λ3 − λ2)v2 = 0.

Now do the same trick again. Applying T to both sides of (5) and using (2) gives

c1(λ3 − λ1)λ1v1 + c2(λ3 − λ2)λ2v2 = 0.

Multiplying (5) by λ2 gives

c1(λ3 − λ1)λ2v1 + c2(λ3 − λ2)λ2v2 = 0.

Subtracting these gives
c1(λ3 − λ1)(λ2 − λ1)v1 = 0.

As v1 6= 0 (as it is an eigenvector) and λ1, λ2, λ3 are distinct this implies c1 = 0. Using c1 = 0 in
(5) gives

c2(λ3 − λ2)v2 = 0.

This implies c2 = 0. Now using c1 = c2 = 0 in (1) implies c3 = 0. Thus we have shown that
whenever (1) holds that c1 = c2 = c3 = 0. Therefore v1, v2, v3 are linearly independent. done.

(6) (10 points) Let V be a finite dimensional vector space and W a subspace of V and let v ∈ V
with v /∈ W . Let S : W → U be a linear map and u ∈ U . Show that there is a linear map
T : V → U that extends S and with Tv = u.

Solution: Let k = dimW and n = dimV . Choose a basis v1, v2, . . . , vk of W . Then v /∈ W =
Span{v1, . . . , vk} implies that {v1, , . . . , vk, v} is linearly independent. So let vk+1 = v and extend
the linearly independent set v1, . . . , vk, vk+1 to a basis v1, , . . . , vn of V . By the basic existence
theorem for linear maps there is a linear map T : V → U such that

Tvi =




Svi, 1 ≤ i ≤ k;
u, i = k + 1;
0, k + 2 ≤ i ≤ n.

Then Tvi = Svi for 1 ≤ i ≤ k and thus T
∣∣
W

and S agree on a basis of W . Therefore T
∣∣
W

= S and
thus T extends S. Also Tv = Tvk+1 = u. done.

(7) (10 points) Let V be a vector space and P : V → V a linear map with P 2 = P . Show that

V = ker(P ) ⊕ Image(P ).

Solution: We need to show that ker(P ) + Image(P ) = V and ker(P ) ∩ Image(P ) = {0}. Note
for any v ∈ V that

P (v − Pv) = Pv − P 2v = Pv − Pv = 0
as P 2 = P . Thus

(v − Pv) ∈ ker(P ) for all v ∈ V.

Now for any v ∈ V
v = (v − Pv) + Pv.

Clearly Pv ∈ Image(P ) and we have just seen (v − Pv) ∈ ker(V ). Thus every element of V is a
sum of an element of ker(P ) and an element of Image(P ), whence V = ker(P ) + Image(P ).

It remains to show that ker(P )∩ Image(P ) = {0}. Let v ∈ ker(P )∩ Image(P ). Then Pv = 0 as
v ∈ ker(P ). As v ∈ Image(P ) there a v′ ∈ V with v = Pv′. But then, using P 2 = P and Pv = 0,

v = Pv′ = P 2v′ = PPv′ = Pv = 0.

Thus if v ∈ ker(P ) ∩ Image(P ), then v = 0. Therefore ker(P ) ∩ Image(P ) = {0}. done.

(8) (10 points) Let V be a finite dimensional vector space and v1, v2, v ∈ V such that for all
f ∈ V ∗

f(v1) = f(v2) = 0 implies f(v) = 0.

Show that v is a linear combination of v1 and v2.
Solution 1: We wish to show that v ∈ Span{v1, v2}. Assume, toward a contradiction, that

v /∈ Span{v1, v2}. Then as Span{v1, v2} is a subspace of V there is a linear functional f ∈ V ∗



that separates v from Span{v1, v2}. That is f(v) = 1, but f(w) = 0 for all w ∈ Span{v1, v2}. As
v1, v2 ∈ Span{v1, v2} we have

f(v1) = f(v2) = 0, but f(v) = 1.

This clearly contradicts our assumption that f(v1) = f(v2) = 0 implies f(v) = 0 and we are done.

Solution 2: The hypothesis is that f(v) = 0 for any f ∈ V ∗ with f(v1) = f(v2) = 0. But the
set of f ∈ V ∗ with f(v1) = f(v2) = 0 is {v1, v2}⊥. Therefore the hypothesis can be restated as
f(v) = 0 for all f ∈ {v1, v2}⊥. But this is just the definition of v ∈ ({v1, v2}⊥

)◦. So we have

v ∈
(
{v1, v2}⊥

)◦
= Span{v1, v2}

as
(
S⊥)◦ = Span(S) for any non-empety subset S of V . done.

(9) (10 points) Let A ∈ M3×3(R) be a matrix with characteristic polynomial x3 − x. Then find
a diagonal matrix similar to A.

Solution: (This is basically due to Mindy, and is a bit more informative than what I did.) Note
that charA(x) = x3 − x = x(x2 − 1) = x(x− 1)(x + 1). Thus the eigenvalues of A are −1, 0, 1. Let
v1 be an eigenvector for λ = −1, v2 an eigenvector for λ = 0 and v3 an eigenvector for λ = 3. As
−1, 0, 1 are distinct, the eigenvectors v1, v2, v3 are linearly indepent. Let P =

[
v1, v2, v3

]
be the

matrix with v1, v2, v3 as columns. Then we have a theorem that says that

P−1AP = diag(−1, 0, 1) =


−1 0 0

0 0 0
0 0 1


 .

This shows that A is similar to diag(−1, 0, 1) done.


