Mathematics 700 Test #1

Name:

Solution Key

Show your work to get credit. An answer with no work will not get credit.

- (1) (15 Points) Define the following:
 - (a) *Linear independence*. The vectors v_1, v_2, \ldots, v_n in the vector space V are linearly independent iff for scalars $c_1, c_2, \ldots, c_n \in \mathbf{F}$ if

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$$

then $c_1 = c_2 = \cdots = c_n = 0$. RESTATEMENT: The only linear combination of v_1, v_2, \ldots, v_n that vanishes is the trivial linear combination.

(b) The *kernel* of a linear map $S: V \to W$ where V and W are vector spaces. The kernel of S, denoted by ker(S), is give by

$$\ker(S) := \{ v \in V : Sv = 0 \}.$$

- (c) The **rank** of a linear map. If $T: V \to W$ is a linear map between vector space, then the rank of T is the dimension of the subspace $\text{Image}(T) := \{Tv : v \in V\}$ of W. RESTATEMENT: The rank of a linear map is the dimension of it image.
- (d) The *dimension* of a vector space. The dimension of a vector space is the number of elements in any of its bases. (This is independent of which basis is used to define it.)
- (2) (10 Points) Find (no proof required) a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ so that

(1)
$$T\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix}, \quad T\begin{bmatrix}1\\1\\0\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix}, \quad T\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}5\\6\end{bmatrix}.$$

Solution 1: Note that

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\0 \end{bmatrix} - \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

Thus

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) + z \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right)$$
$$= (x - y) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (y - z) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

As so by linearity and using the values of T that are given by (1)

$$T\begin{bmatrix} x\\ y\\ z \end{bmatrix} = (x-y)T\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} + (y-z)T\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + zT\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$
$$= (x-y)\begin{bmatrix} 1\\ 2 \end{bmatrix} + (y-z)\begin{bmatrix} 3\\ 4 \end{bmatrix} + z\begin{bmatrix} 5\\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} x+2y+2z\\ 2x+2y+2z \end{bmatrix}$$

Solution 2: We look for T as being given by a matrix.

$$T\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}a & b & c\\d & e & f\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}ax+by+cz\\dx+ey+fz\end{bmatrix}.$$

The the conditions (1) imply

$$T\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}a\\d\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix}, \qquad T\begin{bmatrix}1\\1\\0\end{bmatrix} = \begin{bmatrix}a+b\\d+e\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix}, \qquad T\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}a+b+c\\d+e+f\end{bmatrix} = \begin{bmatrix}5\\6\end{bmatrix}.$$

This leads to the system of equations

$$a = 1$$

$$a + b = 3$$

$$a + b + c = 5$$

$$d = 2$$

$$d + e = 4$$

$$d + e + f = 6$$

which can easly be solved to give

$$a = 1, \quad b = 2, \quad c = 2, \quad d = 2, \quad e = 2, \quad f = 2.$$

and so

$$T\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}x+2y+2z\\2x+2y+2z\end{bmatrix}.$$

(3) (10 Points) Find (no proof required) a basis for the set of the space of vectors $(x, y, z, u, v) \in \mathbb{R}^5$ that satisfy

Solution: Form the matrix of this system:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 \end{bmatrix}.$$

By elmentary row operations this can be reduced to row echelon form

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

So the system is equivalent to

$$x + y = 0$$
$$z + u = 0$$
$$v = 0$$

and therefore the general solution is

x = -y y = any real number z = -u u = any real numberv = 0

Therefore the elments of the soltion space to the given equations are of the form

$$(-y, y, -u, u, 0) = y(-1, 1, 0, 0, 0) + u(0, 0, -1, 1, 0).$$

Thus $\{(-1, 1, 0, 0, 0), (0, 0, -1, 1, 0)\}$ is a basis.

(4) (20 Points) Let \mathcal{P}_3 be the vector space of polynomials of degree at most 3. Define $T: \mathcal{P}_3 \to \mathcal{P}_3$ by

$$Tp(x) = p'(x+1) - p'(x).$$

(a) Find the matrix of T in the basis $\mathcal{B} := \{1, x, x^2, x^3\}.$

Solution: The matrix of T is the matrix whose columns are the coordiate vectors of T1, Tx, Tx^2 , Tx^3 . If p(x) = 1 then p'(x) = 0 and so Tp(x) = p(x+1) - p(x) = 0 in this case. Likewise if p(x) = x then p'(x) = 1 and Tp(x) = p'(x+1) - p'(x) = 1 - 1 = 0. If $p(x) = x^2$, then p'(x) = 2x and so Tp(x) = p'(x+1) - p'(x) = 2(x+1) - 2x = 2. Finally if $p(x) = x^3$, then $p'(x) = 3x^2$ and $Tp(x) = p'(x+1) - p'(x) = 3(x+1)^2 - 3x^2 = 6x + 3$. Whence

$$T1 = 0 \sim \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \qquad Tx = 0 \sim \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix},$$
$$Tx^{2} = 2 \sim \begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix}, \qquad Tx^{3} = 6x + 3 \sim \begin{bmatrix} 3\\6\\0\\0\\0 \end{bmatrix}.$$

Therefore the matrix of T is

$$[T]_{\mathcal{B},\mathcal{B}} = \begin{bmatrix} 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) What are the rank, nullity and trace of T? Solition: As the rank, nullity and trace of T are the same as the rank, nullity, and trace of its matrix we see that

$$\operatorname{rank}(T) = 2$$
, $\operatorname{nullity}(T) = 2$, $\operatorname{trace}(T) = 0$.

(5) (15 Points) Show that if v_1, v_2, v_3 are vectors in the vector space \mathbf{R}^4 such that

$$v_1 - 4v_2 + 3v_3 = 0$$

then

$$Span\{v_1, v_2\} = Span\{v_1, v_2, v_3\}.$$

Solution: From $v_1 - 4v_2 + 3v_3 = 0$ we can solve for v_3 to get $v_3 = -\frac{1}{3}v_1 + \frac{4}{3}v_2$. Let $v \in$ Span $\{v_1, v_2, v_3\}$ then, by the definition of being in the span, there are scalars $c_1, c_2, c_3 \in \mathbf{R}$ so that $v = c_1v_1 + c_2v_2 + c_3v_3$. Then, using the expression we have for v_3 in terms of v_1 and v_2 , we have

$$v = c_1 v_1 + c_2 v_2 + c_3 v_3 = c_1 v_1 + c_2 v_2 + c_3 \left(-\frac{1}{3} v_1 + \frac{4}{3} v_2 \right)$$
$$= \left(c_1 - \frac{1}{3} c_3 \right) v_1 + \left(c_2 + \frac{4}{3} c_3 \right) v_2 \in \operatorname{Span}\{v_1, v_2\}.$$

As v was any element of $\operatorname{Span}\{v_1, v_2, v_3\}$ this implies $\operatorname{Span}\{v_1, v_2, v_3\} \subseteq \operatorname{Span}\{v_1, v_2\}$. The opposite inclusion $\operatorname{Span}\{v_1, v_2\} \subseteq \operatorname{Span}\{v_1, v_2, v_3\}$ is clear. So $\operatorname{Span}\{v_1, v_2\} = \operatorname{Span}\{v_1, v_2, v_3\}$ and we are <u>done.</u>

(6) (15 Points) Let $S: \mathbb{R}^5 \to \mathbb{R}^{17}$ be a linear map with nullity(S) = 2. Then show directly (that is without using the rank plus nullity theorem) that rank(S) = 3.

Solution: As dim ker(S) = nullity(S) = 2 the subspace ker(S) of V has a basis v_1, v_2 with two elments. The vector space \mathbf{R}^5 is 5 dimensional therefore the basis v_1, v_2 of ker(S) can be extended to a basis v_1, v_2, v_3, v_4, v_5 of \mathbf{R}^5 with 5 elments.

CLAIM: Sv_2, Sv_4, Sv_5 is a basis of Image(S). To see this we first need to show that this set spans Image(S). Let $y \in \text{Image}(S)$. Then y = Sx for some $x \in \mathbb{R}^5$. Thus, as v_1, \ldots, v_5 is a basis of \mathbb{R}^5 , there are scalars $x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}$ with

$$x = x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 + x_5v_5.$$

As $v_1, v_2 \in \ker(S)$ we then have $Sv_1 = Sv_2 = 0$ and so

$$y = Sx = S(x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 + x_5v_5)$$

= $x_1Sv_1 + x_2Sv_2 + x_3Sv_3 + Sx_4v_4 + x_5Sv_5$
= $0 + 0 + x_3Sv_3 + Sx_4v_4 + x_5Sv_5$
= $x_3Sv_3 + Sx_4v_4 + x_5Sv_5 \in \text{Span}\{Sv_3, Sv_4, Sv_5\}$

Thus Sv_2, Sv_4, Sv_5 spans Image(S). To see that Sv_2, Sv_4, Sv_5 are linearly independent let c_3, c_4, c_5 be scalars so that

}.

$$c_3Sv_3 + c_4Sv_4 + c_5Sv_5 = 0.$$

Then, by the linearity of S,

$$S(c_3v_3 + c_4v_4 + c_5v_5) = 0$$

This imples $c_3v_3 + c_4v_4 + c_5v_5 \in \ker(S)$ and v_1, v_2 are a basis for $\ker(S)$ so there are scalars $a_1, a_2 \in \mathbf{R}$ so that

$$c_3v_3 + c_4v_4 + c_5v_5 = a_1v_1 + a_2v_2.$$

Rewriting as

$$-a_1v_1 - a_2v_2 + c_3v_3 + c_4v_4 + c_5v_5 = a_1v_1 + a_2v_2 = 0$$

and using that v_1, v_2, \ldots, v_5 are linearly independent this implies $c_3 = c_4 = c_5 = 0$. Thus (2) implies that $c_3 = c_4 = c_5 = 0$. Thus shows that Sv_3, Sv_4, Sv_5 is independent and completes the proof of the claim that Sv_3, Sv_4, Sv_5 is a basis of Image(S).

The claim shows that Image(S) is three dimensional. But then, by the definition of rank, $\text{rank}(S) = \dim \text{Image}(S) = 3.$

(7) (15 Points) Let $S: \mathbb{R}^{10} \to \mathbb{R}^3$ and $T: \mathbb{R}^{10} \to \mathbb{R}^5$ be linear maps. Then show there are two linearly independent vectors $u, v \in \mathbb{R}^{10}$ with Su = Sv = 0 and Tu = Tv = 0.

Solution 1: As Image $(S) \subseteq \mathbb{R}^3$ and Image $(S) \subseteq \mathbb{R}^5$ we have rank $(S) \leq 3$ and rank $(T) \leq 5$. Thus from the rank plus nullity theorem

$$10 = \dim \mathbf{R}^{10} = \operatorname{rank}(S) + \operatorname{nullity}(S) \le 3 + \operatorname{nullity}(S),$$

$$10 = \dim \mathbf{R}^{10} = \operatorname{rank}(T) + \operatorname{nullity}(T) \le 5 + \operatorname{nullity}(T).$$

These imply

$$\dim \ker(S) = \operatorname{nullity}(S) \ge 7$$
, $\dim \ker(T) = \operatorname{nullity}(T) \ge 5$.

But then, using that $\ker(S) + \ker(T)$ is a subspace of \mathbb{R}^{10} , so that $\dim(\ker(S) + \ker(T)) \leq 10$, we have

$$\dim(\ker(S) \cap \ker(T)) + 10 \ge \dim(\ker(S) \cap \ker(T)) + \dim(\ker(S) + \ker(T))$$
$$= \dim \ker(S) + \dim \ker(T)$$
$$\ge 7 + 5 = 12$$

Substract 10 from both sides of this to get $\dim(\ker(S) \cap \ker(T)) \ge 2$. As the dimension of the intersection is ≥ 2 there are linearly independent vectors $u, v \in \ker(S) \cap \ker(T)$. But then Su = Sv = 0 and Tu = Tv = 0.

Solution 2: Define a map $L: \mathbf{R}^{10} \to \mathbf{R}^3 \times \mathbf{R}^5 = \mathbf{R}^8$ by

$$Lx = (Sx, Tx).$$

Then for $x_1, x_2 \in \mathbf{R}^{10}$ and $c_1, c_2 \in \mathbf{R}$

$$L(c_1x_1 + x_2x_2) = (S(c_1x_1 + x_2x_2), T(c_1x_1 + x_2x_2))$$

= $(c_1Sx_1 + c_2Sx_2, c_1Tx_1 + c_2Tx_2)$
= $c_1(Sx_1, Tx_1) + c_2(Sx_2, Tx_2)$
= $c_1Lx_1 + c_2Lx_2.$

Therefore L is linear.

As $\text{Image}(L) \subseteq \mathbb{R}^8$ we have $\text{rank}(L) = \dim \text{Image}(L) \leq 8$. Therefore by the rank plus nullity theorem

$$10 = \dim \mathbf{R}^{10} = \operatorname{nullity}(L) + \operatorname{rank}(L) \le 8.$$

This implies dim $\ker(L) = \operatorname{nullity}(L) \ge 2$. Thus there are two linearly independent vectors $u, v \in \ker(L)$. Then

$$Lu = (Su, Tu) = (0, 0), \quad Lv = (Sv, Tv) = (0, 0).$$

and we have Su = Sv = 0 and Tu = Tv = 0.

done.