Mathematics 700 Test \#1

Show your work to get credit. An answer with no work will not get credit.
(1) (15 Points) Define the following:
(a) Linear independence. The vectors $v_{1}, v_{2}, \ldots, v_{n}$ in the vector space V are linearly independent iff for scalars $c_{1}, c_{2}, \ldots, c_{n} \in \mathbf{F}$ if

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=0
$$

then $c_{1}=c_{2}=\cdots=c_{n}=0$. Restatement: The only linear combination of $v_{1}, v_{2}, \ldots, v_{n}$ that vanishes is the trivial linear combination.
(b) The kernel of a linear map $S: V \rightarrow W$ where V and W are vector spaces. The kernel of S, denoted by $\operatorname{ker}(S)$, is give by

$$
\operatorname{ker}(S):=\{v \in V: S v=0\}
$$

(c) The rank of a linear map. If $T: V \rightarrow W$ is a linear map between vector space, then the rank of T is the dimension of the subspace Image $(T):=\{T v: v \in V\}$ of W. Restatement: The rank of a linear map is the dimension of it image.
(d) The dimension of a vector space. The dimension of a vector space is the number of elements in any of its bases. (This is independent of which basis is used to define it.)
(2) (10 Points) Find (no proof required) a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ so that

$$
T\left[\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right] .
$$

Solution 1: Note that

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+y\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+z\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) \\
& =(x-y)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(y-z)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

As so by linearity and using the values of T that are given by (1)

$$
\begin{aligned}
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =(x-y) T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(y-z) T\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+z T\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =(x-y)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+(y-z)\left[\begin{array}{l}
3 \\
4
\end{array}\right]+z\left[\begin{array}{l}
5 \\
6
\end{array}\right] \\
& =\left[\begin{array}{c}
x+2 y+2 z \\
2 x+2 y+2 z
\end{array}\right]
\end{aligned}
$$

Solution 2: We look for T as being given by a matrix.

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a x+b y+c z \\
d x+e y+f z
\end{array}\right]
$$

The the conditions (1) imply
$T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ d\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad T\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}a+b \\ d+e\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right], \quad T\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}a+b+c \\ d+e+f\end{array}\right]=\left[\begin{array}{l}5 \\ 6\end{array}\right]$.
This leads to the system of equations

$$
\begin{aligned}
& a=1 \quad d=2 \\
& a+b=3 \quad d+e=4 \\
& a+b+c=5 \quad d+e+f=6
\end{aligned}
$$

which can easly be solved to give

$$
a=1, \quad b=2, \quad c=2, \quad d=2, \quad e=2, \quad f=2 .
$$

and so

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+2 y+2 z \\
2 x+2 y+2 z
\end{array}\right]
$$

(3) (10 Points) Find (no proof required) a basis for the set of the space of vectors $(x, y, z, u, v) \in$ \mathbf{R}^{5} that satisfy

$$
\begin{aligned}
& x+y+z+u+v=0 \\
& x+y+2 z+2 u+2 v=0 \\
& x+y+z+u+2 v=0 .
\end{aligned}
$$

Solution: Form the matrix of this system:

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 2 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 & 2 & 0
\end{array}\right] .
$$

By elmentary row operations this can be reduced to row echelon form

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

So the system is equivalent to

$$
\begin{aligned}
x+y & =0 \\
z+u & =0 \\
v & =0
\end{aligned}
$$

and therefore the general solution is

$$
\begin{aligned}
& x=-y \\
& y=\text { any real number } \\
& z=-u \\
& u=\text { any real number } \\
& v=0
\end{aligned}
$$

Therefore the elments of the soltion space to the given equations are of the form

$$
(-y, y,-u, u, 0)=y(-1,1,0,0,0)+u(0,0,-1,1,0)
$$

Thus $\{(-1,1,0,0,0),(0,0,-1,1,0)\}$ is a basis.
(4) (20 Points) Let \mathcal{P}_{3} be the vector space of polynomials of degree at most 3 . Define $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ by

$$
T p(x)=p^{\prime}(x+1)-p^{\prime}(x)
$$

(a) Find the matrix of T in the basis $\mathcal{B}:=\left\{1, x, x^{2}, x^{3}\right\}$.

Solution: The matrix of T is the matrix whose columns are the coordiate vectors of $T 1, T x, T x^{2}, T x^{3}$. If $p(x)=1$ then $p^{\prime}(x)=0$ and so $T p(x)=p(x+1)-p(x)=0$ in this case. Likewise if $p(x)=x$ then $p^{\prime}(x)=1$ and $T p(x)=p^{\prime}(x+1)-p^{\prime}(x)=1-1=0$. If $p(x)=x^{2}$, then $p^{\prime}(x)=2 x$ and so $T p(x)=p^{\prime}(x+1)-p^{\prime}(x)=2(x+1)-2 x=2$. Finally if $p(x)=x^{3}$, then $p^{\prime}(x)=3 x^{2}$ and $T p(x)=p^{\prime}(x+1)-p^{\prime}(x)=3(x+1)^{2}-3 x^{2}=6 x+3$. Whence

$$
\begin{array}{cc}
T 1=0 \sim\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \quad T x=0 \sim\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \\
T x^{2}=2 \sim\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right], \quad T x^{3}=6 x+3 \sim\left[\begin{array}{l}
3 \\
6 \\
0 \\
0
\end{array}\right] .
\end{array}
$$

Therefore the matrix of T is

$$
[T]_{\mathcal{B}, \mathcal{B}}=\left[\begin{array}{llll}
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) What are the rank, nullity and trace of T ?

Solition: As the rank, nullity and trace of T are the same as the rank, nullity, and trace of its matrix we see that

$$
\operatorname{rank}(T)=2, \quad \operatorname{nullity}(T)=2, \quad \operatorname{trace}(T)=0
$$

(5) (15 Points) Show that if v_{1}, v_{2}, v_{3} are vectors in the vector space \mathbf{R}^{4} such that

$$
v_{1}-4 v_{2}+3 v_{3}=0
$$

then

$$
\operatorname{Span}\left\{v_{1}, v_{2}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Solution: From $v_{1}-4 v_{2}+3 v_{3}=0$ we can solve for v_{3} to get $v_{3}=-\frac{1}{3} v_{1}+\frac{4}{3} v_{2}$. Let $v \in$ $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ then, by the definition of being in the span, there are scalars $c_{1}, c_{2}, c_{3} \in \mathbf{R}$ so that $v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$. Then, using the expression we have for v_{3} in terms of v_{1} and v_{2}, we have

$$
\begin{aligned}
v & =c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=c_{1} v_{1}+c_{2} v_{2}+c_{3}\left(-\frac{1}{3} v_{1}+\frac{4}{3} v_{2}\right) \\
& =\left(c_{1}-\frac{1}{3} c_{3}\right) v_{1}+\left(c_{2}+\frac{4}{3} c_{3}\right) v_{2} \in \operatorname{Span}\left\{v_{1}, v_{2}\right\} .
\end{aligned}
$$

As v was any element of $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ this implies $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. The opposite inclusion $\operatorname{Span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ is clear. $\operatorname{So} \operatorname{Span}\left\{v_{1}, v_{2}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ and we are
done.
(6) (15 Points) Let $S: \mathbf{R}^{5} \rightarrow \mathbf{R}^{17}$ be a linear map with nullity $(S)=2$. Then show directly (that is without using the rank plus nullity theorem) that $\operatorname{rank}(S)=3$.

Solution: As $\operatorname{dim} \operatorname{ker}(S)=\operatorname{nullity}(S)=2$ the subspace $\operatorname{ker}(S)$ of V has a basis v_{1}, v_{2} with two elments. The vector space \mathbf{R}^{5} is 5 dimensional therefore the basis v_{1}, v_{2} of $\operatorname{ker}(S)$ can be extended to a basis $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ of \mathbf{R}^{5} with 5 elments.

Claim: $S v_{2}, S v_{4}, S v_{5}$ is a basis of Image (S). To see this we first need to show that this set spans Image (S). Let $y \in \operatorname{Image}(S)$. Then $y=S x$ for some $x \in \mathbf{R}^{5}$. Thus, as v_{1}, \ldots, v_{5} is a basis of \mathbf{R}^{5}, there are scalars $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \mathbf{R}$ with

$$
x=x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}+x_{4} v_{4}+x_{5} v_{5}
$$

As $v_{1}, v_{2} \in \operatorname{ker}(S)$ we then have $S v_{1}=S v_{2}=0$ and so

$$
\begin{aligned}
y & =S x=S\left(x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}+x_{4} v_{4}+x_{5} v_{5}\right) \\
& =x_{1} S v_{1}+x_{2} S v_{2}+x_{3} S v_{3}+S x_{4} v_{4}+x_{5} S v_{5} \\
& =0+0+x_{3} S v_{3}+S x_{4} v_{4}+x_{5} S v_{5} \\
& =x_{3} S v_{3}+S x_{4} v_{4}+x_{5} S v_{5} \in \operatorname{Span}\left\{S v_{3}, S v_{4}, S v_{5}\right\} .
\end{aligned}
$$

Thus $S v_{2}, S v_{4}, S v_{5}$ spans Image (S). To see that $S v_{2}, S v_{4}, S v_{5}$ are linearly independent let c_{3}, c_{4}, c_{5} be scalars so that

$$
c_{3} S v_{3}+c_{4} S v_{4}+c_{5} S v_{5}=0
$$

Then, by the linearity of S,

$$
S\left(c_{3} v_{3}+c_{4} v_{4}+c_{5} v_{5}\right)=0
$$

This imples $c_{3} v_{3}+c_{4} v_{4}+c_{5} v_{5} \in \operatorname{ker}(S)$ and v_{1}, v_{2} are a basis for $\operatorname{ker}(S)$ so there are scalars $a_{1}, a_{2} \in \mathbf{R}$ so that

$$
c_{3} v_{3}+c_{4} v_{4}+c_{5} v_{5}=a_{1} v_{1}+a_{2} v_{2}
$$

Rewriting as

$$
-a_{1} v_{1}-a_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}+c_{5} v_{5}=a_{1} v_{1}+a_{2} v_{2}=0
$$

and using that $v_{1}, v_{2}, \ldots, v_{5}$ are linearly independent this implies $c_{3}=c_{4}=c_{5}=0$. Thus (2) implies that $c_{3}=c_{4}=c_{5}=0$. Thus shows that $S v_{3}, S v_{4}, S v_{5}$ is independent and completes the proof of the claim that $S v_{3}, S v_{4}, S v_{5}$ is a basis of Image (S).

The claim shows that Image (S) is three dimensional. But then, by the definition of rank, $\operatorname{rank}(S)=\operatorname{dim} \operatorname{Image}(S)=3$.
done.
(7) (15 Points) Let $S: \mathbf{R}^{10} \rightarrow \mathbf{R}^{3}$ and $T: \mathbf{R}^{10} \rightarrow \mathbf{R}^{5}$ be linear maps. Then show there are two linearly independent vectors $u, v \in \mathbf{R}^{10}$ with $S u=S v=0$ and $T u=T v=0$.

Solution 1: As Image $(S) \subseteq \mathbf{R}^{3}$ and $\operatorname{Image}(S) \subseteq \mathbf{R}^{5}$ we have $\operatorname{rank}(S) \leq 3$ and $\operatorname{rank}(T) \leq$ 5. Thus from the rank plus nullity theorem

$$
\begin{aligned}
& 10=\operatorname{dim} \mathbf{R}^{10}=\operatorname{rank}(S)+\operatorname{nullity}(S) \leq 3+\operatorname{nullity}(S), \\
& 10=\operatorname{dim} \mathbf{R}^{10}=\operatorname{rank}(T)+\operatorname{nullity}(T) \leq 5+\operatorname{nullity}(T)
\end{aligned}
$$

These imply

$$
\operatorname{dim} \operatorname{ker}(S)=\operatorname{nullity}(S) \geq 7, \quad \operatorname{dim} \operatorname{ker}(T)=\operatorname{nullity}(T) \geq 5
$$

But then, using that $\operatorname{ker}(S)+\operatorname{ker}(T)$ is a subspace of \mathbf{R}^{10}, so that $\operatorname{dim}(\operatorname{ker}(S)+\operatorname{ker}(T)) \leq 10$, we have

$$
\begin{aligned}
\operatorname{dim}(\operatorname{ker}(S) \cap \operatorname{ker}(T))+10 & \geq \operatorname{dim}(\operatorname{ker}(S) \cap \operatorname{ker}(T))+\operatorname{dim}(\operatorname{ker}(S)+\operatorname{ker}(T)) \\
& =\operatorname{dim} \operatorname{ker}(S)+\operatorname{dim} \operatorname{ker}(T) \\
& \geq 7+5=12
\end{aligned}
$$

Substract 10 from both sides of this to get $\operatorname{dim}(\operatorname{ker}(S) \cap \operatorname{ker}(T)) \geq 2$. As the dimension of the intersection is ≥ 2 there are linearly independent vectors $u, v \in \operatorname{ker}(S) \cap \operatorname{ker}(T)$. But then $S u=S v=0$ and $T u=T v=0$.
done.
Solution 2: Define a map $L: \mathbf{R}^{10} \rightarrow \mathbf{R}^{3} \times \mathbf{R}^{5}=\mathbf{R}^{8}$ by

$$
L x=(S x, T x) .
$$

Then for $x_{1}, x_{2} \in \mathbf{R}^{10}$ and $c_{1}, c_{2} \in \mathbf{R}$

$$
\begin{aligned}
L\left(c_{1} x_{1}+x_{2} x_{2}\right) & =\left(S\left(c_{1} x_{1}+x_{2} x_{2}\right), T\left(c_{1} x_{1}+x_{2} x_{2}\right)\right) \\
& =\left(c_{1} S x_{1}+c_{2} S x_{2}, c_{1} T x_{1}+c_{2} T x_{2}\right) \\
& =c_{1}\left(S x_{1}, T x_{1}\right)+c_{2}\left(S x_{2}, T x_{2}\right) \\
& =c_{1} L x_{1}+c_{2} L x_{2} .
\end{aligned}
$$

Therefore L is linear.
As Image $(L) \subseteq \mathbf{R}^{8}$ we have $\operatorname{rank}(L)=\operatorname{dim} \operatorname{Image}(L) \leq 8$. Therefore by the rank plus nullity theorem

$$
10=\operatorname{dim} \mathbf{R}^{10}=\operatorname{nullity}(L)+\operatorname{rank}(L) \leq 8
$$

This implies $\operatorname{dim} \operatorname{ker}(L)=\operatorname{nullity}(L) \geq 2$. Thus there are two linearly independent vectors $u, v \in \operatorname{ker}(L)$. Then

$$
L u=(S u, T u)=(0,0), \quad L v=(S v, T v)=(0,0)
$$

and we have $S u=S v=0$ and $T u=T v=0$.
done.

