Mathematics 700 Homework
 Due Monday, September 16

(1) Show that if V is finite dimensional and $V=U \oplus W$ for subspaces U and W, then $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} W$.
(2) Let \mathcal{P}_{3} be the vector space of real polynomials of degree ≤ 3. Let U be the subspace of \mathcal{P}_{3} of even polynomials (that is $p(-x)=p(x)$) and let W be the subspace of odd polynomials (that is $p(-x)=-p(x)$. Show $\mathcal{P}_{3}=U \oplus W$.
(3) Let V and W be vector spaces and $S, T: V \rightarrow W$ linear maps. Then show
(a) The map $S+T$ is linear.
(b) If c is a scalar, then $c T$ is linear.
(4) Let U, V, W be vector spaces and $S: U \rightarrow V, T: V \rightarrow W$ linear maps. Then show $T S: U \rightarrow W$ is linear. (Recall that $T S$ is the composition $T \circ S$.)
(5) Let $T: V \rightarrow W$ be a linear map between finite dimensional vector spaces. Show that $\operatorname{nullity}(T) \geq \operatorname{dim} V-\operatorname{dim} W$.
(6) Let \mathcal{P}_{n} be the vector space of real polynomials of degree $\leq n$. Compute the rank and nullity of the following
(a) The derivative $D: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}$.
(b) The maps $S: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}$ given by

$$
S p(x)=\frac{1}{2}(p(x)+p(-x))
$$

(c) The maps $A: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}$ given by

$$
A p(x)=\frac{1}{2}(p(x)-p(-x))
$$

(d) The map $T: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}$ given by

$$
T p(x)=\frac{p(x+1)-2 p(x)+p(x-1)}{x}
$$

(e) The map $V: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ given by

$$
V p(x)=\int_{0}^{x} p^{\prime}(t) d t
$$

