Mathematics 700 Homework Due Monday, September 16

- (1) Show that if V is finite dimensional and $V = U \oplus W$ for subspaces U and W, then $\dim V = \dim U + \dim W$.
- (2) Let \mathcal{P}_3 be the vector space of real polynomials of degree ≤ 3 . Let U be the subspace of \mathcal{P}_3 of even polynomials (that is p(-x) = p(x)) and let W be the subspace of odd polynomials (that is p(-x) = -p(x). Show $\mathcal{P}_3 = U \oplus W$.
- (3) Let V and W be vector spaces and S, T: V → W linear maps. Then show
 (a) The map S + T is linear.
 (b) If c is a scalar, then cT is linear.
- (4) Let U, V, W be vector spaces and $S: U \to V, T: V \to W$ linear maps. Then show $TS: U \to W$ is linear. (Recall that TS is the composition $T \circ S$.)
- (5) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Show that $\operatorname{nullity}(T) \ge \dim V \dim W$.
- (6) Let \mathcal{P}_n be the vector space of real polynomials of degree $\leq n$. Compute the rank and nullity of the following
 - (a) The derivative $D: \mathcal{P}_4 \to \mathcal{P}_4$.
 - (b) The maps $S: \mathcal{P}_4 \to \mathcal{P}_4$ given by

$$Sp(x) = \frac{1}{2}(p(x) + p(-x)).$$

(c) The maps $A: \mathcal{P}_4 \to \mathcal{P}_4$ given by

$$Ap(x) = \frac{1}{2}(p(x) - p(-x))$$

(d) The map $T: \mathcal{P}_4 \to \mathcal{P}_4$ given by

$$Tp(x) = \frac{p(x+1) - 2p(x) + p(x-1)}{x}$$

(e) The map $V: \mathcal{P}_n \to \mathcal{P}_n$ given by

$$Vp(x) = \int_0^x p'(t) \, dt$$