Mathematics 700 Homework
 Due Friday, September 13

(1) Find a basis for the set of vectors in $\mathbf{R}^{4}=\{(x, y, z, w): x, y, z, w \in \mathbf{R}\}$ so that the two conditions

$$
\begin{array}{r}
x+2 y+2 z+w=0 \\
x+2 y+3 z+4 w=0
\end{array}
$$

hold.
(2) Find the change of basis matrices relating the two bases

$$
\begin{aligned}
\mathcal{U} & :=\{(1,0,0),(0,1,0),(0,0,1)\} \\
\mathcal{V} & :=\{(1,2,3),(0,1,2),(0,0,1)\}
\end{aligned}
$$

of \mathbf{R}^{3}.
(3) Let \mathcal{P}_{3} be the vector space of all polynomials of degree ≤ 3 with real coefficients.
(a) Show that $\mathcal{B}:=\left\{1,(x-1),(x-1)^{2},(x-1)^{3}\right\}$ is a basis for \mathcal{P}_{3}.
(b) Find the coordinate vectors in terms of the basis \mathcal{B} for x^{3} and $2 x^{2}+1$ in terms of the basis \mathcal{B}.
(c) Find a general formula for the coordinate vector of $p(x) \in \mathcal{P}_{3}$ in terms of the basis \mathcal{B}. Hint: Taylor's theorem.
(4) Find the change of basis matrices relating the two bases

$$
\begin{aligned}
\mathcal{U} & :=\left\{1, x, x^{2}, x^{3}\right\} \\
\mathcal{V} & :=\{1, x, x(x-1), x(x-1)(x-2)\}
\end{aligned}
$$

of \mathcal{P}_{3} (the vector space of polynomials of real of degree ≤ 3.
(5) Let \mathcal{P}_{3} be the vector space of real polynomials of degree ≤ 3 with real coefficients. Define two subsets \mathcal{D} and \mathcal{M} of \mathcal{P}_{3} by

$$
\begin{aligned}
\mathcal{D} & :=\{p(x): p(x+2)-2 p(x+1)+p(x)=0\} \\
\mathcal{M} & :=\{p(x): p(2 x-2)=4 p(x)\} .
\end{aligned}
$$

Show that both \mathcal{D} and \mathcal{M} are subspaces of \mathcal{P}_{3} and find bases for each of them.
(6) Let V and W be subspaces of \mathbf{R}^{8} so that $\operatorname{dim} V=4$ and $\operatorname{dim} W=5$. Show that there is a nonzero vector in $V \cap W$.
(7) If V is a finite dimensional vector space and U a subspace of V then the codimension of W in V is defined by

$$
\operatorname{codim}_{V} W:=\operatorname{dim} V-\operatorname{dim} W .
$$

When the space V is clear from context we drop the subscript of V and just write $\operatorname{codim} W$. If U and W are subspaces of V then derive formulas for $\operatorname{codim}(U \cap W)$ and $\operatorname{codim}(U+W)$. (Hint: What to you know about $\operatorname{dim}(U \cap W)$ and $\operatorname{dim}(U+W)$?)
(8) Let $M_{3 \times 3}(\mathbf{R})$ be the vector space of 3×3 matrices over the real numbers. That is matrices that look like

$$
A:=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The transpose A^{t} of A is matrix obtained by interchanging rows and columns of A. That is

$$
A:=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

The matrix A is symmetric iff $A^{t}=A$ and is skew symmetric iff $A^{t}=-A$.
(a) Show that $M_{3 \times 3}(\mathbf{R})$ is 9 dimensional by writing down a basis.
(b) Let $M_{3 \times 3}^{\mathrm{sym}}(\mathbf{R})$ be the set of symmetric matrices in $M_{3 \times 3}(\mathbf{R})$. Show that $M_{3 \times 3}^{\mathrm{sym}}(\mathbf{R})$ is a subspace of $M_{3 \times 3}(\mathbf{R})$ and find its dimension by writing down a basis.
(c) Let $M_{3 \times 3}^{\text {skew }}(\mathbf{R})$ be the set of skew symmetric matrices in $M_{3 \times 3}(\mathbf{R})$. Show that $M_{3 \times 3}^{\text {skew }}(\mathbf{R})$ is a subspace of $M_{3 \times 3}(\mathbf{R})$ and find its dimension by writing down a basis.
(d) Show that any 4 dimensional subspace of $M_{3 \times 3}(\mathbf{R})$ contains a non-zero symmetric matrix.
(e) Give an example of a 3 dimensional subspace of $M_{3 \times 3}^{\text {sym }}(\mathbf{R})$ that does not contain any non-zero symmetric matrix.

The Next Quiz.

The second quiz will be on Wednesday September 11 and will cover Section 3.7 of Schaum's Outline (pages 73-76, echelon matrices, row canonical form, row equivalence) Know the following:
(1) The three elementary operations $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3} on page 74 .
(2) Theorem 3.7 on page 75 (that every matrix has a unique row canonical form).
(3) Be able find the row canonical form of a matrix. (Problems 3.18, 3.30 pages 98-99 would be good practice.)

