Mathematics 700 Homework
 Due Wednesday, September 9

(1) What is the span of $(1,0,1),(0,1,1)$ and $(1,1,1)$ in \mathbf{R}^{3} ?
(2) What is the span of $(1,0,1),(0,1,1)$ and $(2,3,-3)$ in \mathbf{R}^{3} ?
(3) Give an example of there vectors in \mathbf{R}^{3} so that any two are linear independent, but the set of all three is linearly dependent.
(4) Let \mathcal{P}_{n} the real polynomials of degree $\leq n$. What is the dimension of \mathcal{P}_{n}. Prove your result by finding a basis of \mathcal{P}_{n}.
(5) Let $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbf{C}$ be distinct complex numbers. Then when are the vectors

$$
\begin{aligned}
& v_{1}=(1,1,1,1) \\
& v_{2}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \\
& v_{3}=\left(z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{4}^{2}\right) \\
& v_{3}=\left(z_{1}^{3}, z_{2}^{3}, z_{3}^{3}, z_{4}^{3}\right)
\end{aligned}
$$

linearly independent? Prove your result. (Hint: It is not hard to do this problem by direct calculation, but here is a less messy method. If $c_{1}, \ldots, c_{4} \in \mathbf{C}$ so that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{2}+c_{4} v_{4}=0$ then let $p(x)$ be the polynomial $p(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}$. Then $p\left(z_{k}\right)=0$ for $k=1, \ldots, 4$. How many roots does a polynomial of degree ≤ 3 have?)
(6) Let \mathcal{P}_{3} be the polynomials of degree ≤ 3 over the field \mathbf{F}. Let $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbf{F}$ be distinct. Let $\ell_{i}(x)$ for $i=1, \ldots, 4$ be the polynomials

$$
\begin{aligned}
& \ell_{1}(x)=\frac{\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right)} \\
& \ell_{2}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right)}, \\
& \ell_{3}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{4}\right)}{\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{3}-a_{4}\right)}, \\
& \ell_{4}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)}{\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)} .
\end{aligned}
$$

These are the Lagrange interpolation polynomials with nodes at a_{1}, \ldots, a_{4}. (You are not responsible for this terminology, but it is standard and you will likely see it again in other classes.)
(a) Show that $\ell_{i}\left(a_{j}\right)=\delta_{i j}$ where δ is the Kronecker delta function:

$$
\delta_{i j}:= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

(b) Show that $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ is a basis of \mathcal{P}_{3}. (Hint: To show linear independence set a linear combination of $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ to 0 and evaluate this linear combination at $a_{1}, a_{2}, a_{3}, a_{4}$ and use that $\ell_{i}\left(a_{j}\right)=\delta_{i j}$.)
(c) Let $b_{1}, b_{2}, b_{3}, b_{4} \in \mathbf{F}$. Let

$$
p(x)=b_{1} \ell_{1}(x)+b_{2} \ell_{2}(x)+b_{3} \ell_{3}(x)+b_{4} \ell_{4}(x)
$$

The show that $p\left(a_{i}\right)=b_{i}$ for $i=1, \ldots, 4$.
(d) Optional extra credit: Extend these results to \mathcal{P}_{n} for $n \geq 1$.
(7) Let \mathcal{P}_{2} be the vector space of all real polynomials of degree ≤ 2.
(a) Letting $\mathcal{P}_{1} \subset \mathcal{P}_{2}$ in the natural way, show that \mathcal{P}_{1} is a two dimensional subspace of \mathcal{P}_{2}.
(b) For any $a \in \mathbf{R}$ show that $\mathcal{Z}(a):=\left\{p(x) \in \mathcal{P}_{2}: p(a)=0\right\}$ is a two dimensional subspace of \mathcal{P}_{2} by giving a basis of $\mathcal{Z}(a)$.
(c) True or False: If \mathcal{V} is a two dimensional subspace of \mathcal{P}_{2} then either $\mathcal{V}=\mathcal{P}_{1}$ or $\mathcal{V}=\mathcal{Z}(a)$ for some $a \in \mathbf{R}$? Prove your answer is correct.
(8) Let V be a vector space with $\left\{u_{1}, \ldots, u_{m}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ subsets of V with the same finite number of elements. Assume that $\left\{u_{1}, \ldots, u_{m}\right\}$ is linearly independent and that

$$
\operatorname{Span}\left\{u_{1}, \ldots, u_{m}\right\} \subseteq \operatorname{Span}\left\{v_{1}, \ldots, v_{m}\right\}
$$

Then show $\operatorname{Span}\left\{u_{1}, \ldots, u_{m}\right\}=\operatorname{Span}\left\{v_{1}, \ldots, v_{m}\right\}$ and that $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.

