Mathematics 700 Homework
 Due Wednesday, September 3

(1) Let V be a vector space and $v_{1}, \ldots, v_{m} \in V$ with the property that if any vector is removed from $\left\{v_{1}, \ldots, v_{m}\right\}$ then the resulting set has a smaller span than $\left\{v_{1}, \ldots, v_{m}\right\}$. Then v_{1}, \ldots, v_{m} is linearly independent.

Restatement: If $S \subset V$ is a finite subset of V such that for every proper subset $S^{\prime} \subset S$ we have $\operatorname{Span}\left(S^{\prime}\right) \neq \operatorname{Span}(S)$, then S is linearly independent.

Hint: One way would be to use the proposition on page 28 of the notes and a proof by contradiction.
(2) A vector space V is finite dimensional iff there it is spanned by a finite subset. (That is V is finite dimensional iff there are $v_{1}, \ldots, v_{m} \in V$ such that $V=\operatorname{Span}\left\{v_{1}, \ldots, v_{m}\right\}$. Show that any finite dimensional vector space is spanned by a linearly independent set.

