Mathematics 700 Homework Due Wednesday, September 3

(1) Let V be a vector space and $v_1, \ldots, v_m \in V$ with the property that if any vector is removed from $\{v_1, \ldots, v_m\}$ then the resulting set has a smaller span than $\{v_1, \ldots, v_m\}$. Then v_1, \ldots, v_m is linearly independent.

Restatement: If $S \subset V$ is a finite subset of V such that for every proper subset $S' \subset S$ we have $\text{Span}(S') \neq \text{Span}(S)$, then S is linearly independent.

HINT: One way would be to use the proposition on page 28 of the notes and a proof by contradiction.

(2) A vector space V is **finite dimensional** iff there it is spanned by a finite subset. (That is V is finite dimensional iff there are $v_1, \ldots, v_m \in V$ such that $V = \text{Span}\{v_1, \ldots, v_m\}$. Show that any finite dimensional vector space is spanned by a linearly independent set.