Mathematics 700 Homework
 Due Friday, December 6

The following is a standard part of the theory of linear operators.
Theorem 1. Let V be a vector space over the field \mathbf{F} and let $S: V \rightarrow V$ be a linear operator on V. Assume that there are relatively prime polynomials $p_{1}(x), p_{2}(x), \ldots, p_{k}(x)$ such that if $f(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)$ is the product of these polynomials, then

$$
f(S)=0
$$

Then V is the direct sum of the kernels of the linear maps $p_{i}(S)$. That is

$$
V=\operatorname{ker}\left(p_{1}(S)\right) \oplus \operatorname{ker}\left(p_{2}(S)\right) \oplus \cdots \oplus \operatorname{ker}\left(p_{k}(S)\right)
$$

Problem 1. Prove this along the following lines.
(a) Let

$$
q_{i}(x)=\frac{f(x)}{p_{i}(x)}=\prod_{j \neq i} p_{j}(x)
$$

That is $q_{i}(x)$ is the polynomial so that

$$
p_{i}(x) q_{i}(x)=f(x)
$$

Then show that $q_{1}(x), q_{2}(x), \ldots, q_{k}(x)$ are relatively prime.
(b) Show that there are polynomials $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ such that

$$
h_{1}(x) q_{1}(x)+h_{2}(x) q_{2}(x)+\cdots+h_{k}(x) q_{k}(x)=1
$$

(c) For $1 \leq i \leq k$ let

$$
P_{i}=h_{i}(S) q_{i}(S)
$$

Show that

$$
P_{1}+P_{2}+\cdots+P_{k}=I, \quad P_{i}^{2}=P_{i}, \quad i \neq j \text { implies } P_{i} P_{j}=P_{j} P_{i}=0
$$

(d) Thus (here you can just quote an old homework problem)

$$
V=\operatorname{Image}\left(P_{1}\right) \oplus \operatorname{Image}\left(P_{2}\right) \oplus \cdots \oplus \operatorname{Image}\left(P_{k}\right)
$$

(e) To finish show that

$$
\text { Image }\left(P_{i}\right)=\operatorname{ker}\left(p_{i}(S)\right)
$$

Theorem 2. Let V be a finite dimensional vector space and let $S: V \rightarrow V$ be a linear operator on V. Let $\operatorname{char}_{S}(x)$ be the characteristic polynomial of S. Factor $\operatorname{char}_{A}(x)$ into powers of primes. That is

$$
\operatorname{char}_{A}(x)=p_{1}(x)^{n_{1}} p_{2}(x)^{n_{2}} \ldots p_{k}(x)^{n_{k}}
$$

where $p_{1}(x), p_{2}(x), \ldots, p_{k}(x)$ are distinct irreducible polynomials. Then show that

$$
V=\operatorname{ker}\left(p_{1}(S)^{n_{1}}\right) \oplus \operatorname{ker}\left(p_{2}(S)^{n_{2}}\right) \oplus \cdots \oplus \operatorname{ker}\left(p_{k}(S)^{n_{k}}\right)
$$

This is the primary decomposition of V under S.
Problem 2. Prove this. Hint: Cayley-Hamilton and the theorem above.
Here are more qualifying exam questions:

Problem 3 (January 1986). Let M and N be 6×6 matrices over C, both having minimal polynomial x^{3}.
(1) Prove that M and N are similar if and only if they have the same rank.
(2) Give a counterexample to show that the statement is false if 6 is replaced by 7 . Hint: Think about what the elementary divisors of M and N can be.

Problem 4 (August 1987). Exhibit two real matrices with no real eigenvalues which have the same characteristic polynomial and the same minimal polynomial but are not similar.

Problem 5 (August 1990). Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ be given by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{4}, x_{1},-2 x_{2}-x_{3}-4 x_{4}, 4 x_{2}+x_{3}\right)
$$

(1) Compute the characteristic polynomial of T.
(2) Compute the minimal polynomial of T.
(3) The vector space \mathbf{R}^{4} is the direct sum of two proper T-invariant subspaces. Exhibit a basis for one of these subspaces.

Problem 6 (August 1990). Let A and B be $n \times n$ matrices with entries on the field F such that $A^{n-1} \neq 0, B^{n-1} \neq 0$, and $A^{n}=B^{n}=0$. Prove that A and B are similar, or show, with a counterexample, that A and B are not necessarily similar. Hint: What are the possible elementary divisors of a matrix with $A^{n}=0$, and $A^{n-1} \neq 0$?

Problem 7 (August 1993).
Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
3 & 1 & 3 \\
-3 & -3 & -5
\end{array}\right]
$$

(1) Determine the rational canonical form of A.
(2) Determine the Jordan canonical form of A.

Problem 8 (August 1998). Let V be a finite dimensional vector space and $\mathcal{L}(V)$ the set of linear operators on V. Suppose $T \in \mathcal{L}(V)$. Suppose that

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}
$$

where V_{i} is T invariant for each $i \in\{1, \ldots, k\}$. Let $m(x)$ be the minimal polynomial of T and $m_{i}(x)$ the minimal polynomial of T restricted to V_{i}, for each $i \in\{1, \ldots, k\}$. How is $m(x)$ related to the set $\left\{m_{1}(x), \ldots, m_{r}(x)\right\}$?

