Mathematics 700 Homework
 Due Monday, December 2

Problem 1. As we did not get around to doing it in class show that if R is a commutative ring, and $A \in M_{n \times n}(R)$, then A has an inverse if and only if $\operatorname{det}(A)$ is a unit in R. Hint: See Theorem 4.21 on Page 53 of the typeset notes.

Problem 2. Crammer's rule for solve systems of equations is a standard result that we have not done in class. So read $\S 4.2 .1$ (Pages 43-44) of the notes and do Problems 31 and 32 on Page 44.
Problem 3. Read Pages 56-57 of the notes and do Problem 36 on Page 57.
Here are more qualifying exam questions that I think either reinforce or extend what we have covered so far in the class.
Problem 4 (August 1984). Let V be the vector space over \mathbf{R} of all $n \times n$ matrices with entries from \mathbf{R}.
(1) Prove that $\left\{I, A, A^{2}, \ldots, A^{n}\right\}$ is linearly dependent for all $A \in V$. Hint: Cayley-Hamilton.
(2) Let $A \in V$. Prove that A is invertible if and only if I belongs to the span of $\left\{A, A^{2}, \ldots, A^{n}\right\}$.
Problem 5 (January, 1985). (1) (a) You may skip this part. Let V and W be vector spaces and let T be a linear operator from V into W. Suppose that V is finite-dimensional. Prove $\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim} V$.
(b) Let $T \in L(V, V)$, where V is a finite dimensional vector space. (For a linear operator S denote by $\mathcal{N}(S)$ the null space and by $\mathcal{R}(S)$ the range of S.)
(i) Prove there is a least natural number k such that $\mathcal{N}\left(T^{k}\right)=\mathcal{N}\left(T^{k+1}\right)=$ $\mathcal{N}\left(T^{k+2}\right) \cdots$ Use this k in the rest of this problem.
(ii) Prove that $\mathcal{R}\left(T^{k}\right)=\mathcal{R}\left(T^{k+1}\right)=\mathcal{R}\left(T^{k+2}\right) \cdots$
(iii) Prove that $\mathcal{N}\left(T^{k}\right) \cap \mathcal{R}\left(T^{k}\right)=\{0\}$.
(iv) Prove $V=\mathcal{N}\left(T^{k}\right) \oplus \mathcal{R}\left(T^{k}\right)$.

Problem 6 (August, 1985). Prove that if A and B are $n \times n$ matrices from : and $A B=B A$, then A and B have a common eigenvector.
Problem 7 (August, 1987). Compute the minimal and characteristic polynomials of the following matrix. Is it diagonalizable?

$$
\left[\begin{array}{cccc}
5 & -2 & 0 & 0 \\
6 & -2 & 0 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Problem 8 (January, 1989). Suppose that V in an n-dimensional vector space and T is a linear map on V of rank 1. Prove that T is nilpotent or diagonalizable. Hint: Let $W=\operatorname{ker} T$, then (rank plus nullity) $\operatorname{dim} W=n-1$. Let v_{0} be a vector that spans Image (T). Then split into two case. First if $v_{0} \in W$ that what can you say about $T T v$ for $v \in V$? Second it $v_{0} \notin W$, then choose $v_{1}, v_{2}, \ldots, v_{n-1}$ a basis of W and show $v_{1} v_{2}, \ldots, v_{n-1}, v_{0}$ is a basis of V. What is the matrix of T in this basis?

Problem 9 (August, 1990). If M is the $n \times n$ matrix

$$
M=\left[\begin{array}{ccccc}
x & a & a & \cdots & a \\
a & x & a & \cdots & a \\
a & a & x & \cdots & a \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a & a & a & \cdots & x
\end{array}\right]
$$

then prove that $\operatorname{det} M=[x+(n-1) a](x-a)^{n-1}$.
Problem 10 (August, 1991). Let A be an $n \times n$ with entries from the field \mathbf{F}. Suppose that $A^{2}=A$. Prove that the rank of A is equal to the trace of A. Hint: As $A^{2}=A$ then we can write \mathbf{F}^{n} as a direct sum $\mathbf{F}^{n}=\operatorname{Image}(A) \oplus \operatorname{ker}(A)$. Choose a basis v_{1}, \ldots, v_{r} of Image (A) and a basis v_{r+1}, \ldots, r_{n} of $\operatorname{ker}(A)$. Then show $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of \mathbf{F}^{n}. What is the matrix of A in the basis \mathcal{V} ?

Problem 11 (January, 1996).
Let \mathcal{P}_{3} be the vector space of all with coefficients from \mathbf{R} and of degree at most 3 . Define a linear $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ by $(T f)(x)=f(2 x-6)$. Is T diagonalizable? Explain why.

Problem 12 (January, 1996). Let \mathcal{P}_{3} be the vector space of all with coefficients from \mathbf{R} and of degree at most 3 . Define a linear $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ by $(T f)(x)=f(2 x-6)$. Is T diagonalizable? Explain why.

Problem 13 (August, 1996). Suppose that A is a 3×3 real orthogonal matrix, i.e., $A^{t}=A^{-1}$, with determinant -1 . Prove that -1 is an eigenvalue of for A. Hint: Recall that -1 is an eigenvalue of A if and only if $\operatorname{det}(A-(-1) I)=\operatorname{det}(A+I)=0$. Now note

$$
\begin{aligned}
\operatorname{det}(A+I) & =\operatorname{det}\left((A+I)^{t}\right)=\operatorname{det}\left(A^{t}+I\right)=\operatorname{det}\left(A^{-1}+I\right) \\
& =\operatorname{det}\left(A^{-1}(I+A)\right)=\operatorname{det}\left(A^{-1}\right) \operatorname{det}(I+A)
\end{aligned}
$$

Now what is $\operatorname{det}\left(A^{-1}\right)$.
Problem 14 (January, 1998). For any nonzero scalar a, show that there are no real $n \times n$ matrices A and B such that $A B-B A=a I$. Hint: Take the trace.

Problem 15 (January, 1998). Suppose that A and B are diagonalizable matrices over a field \mathbb{F}. Prove that they are simultaneously diagonalizable, that is there there exists an invertible matrix P such that $P A P^{-1}$ and $P B P^{-1}$ are both diagonal, if and only if $A B=B A$.

