Mathematics 700 Homework

Due Wednesday, September 3

(1) Let V be a vector space over \mathbf{F} and $S \subset V$ a non-empty subset of V. Show that S is a subspace of V if and only if $S=\operatorname{Span}(S)$.
(2) Which of the following is a subspace of \mathbf{R}^{3}. Give a brief justification of your answer.
(a) $\{(x, y, z): 2 x+3 y+4 z=0\}$
(b) $\{(x, y, z): 2 x+3 y+4 z=1\}$
(c) The line through $(1,2,3)$ and parallel to $(1,0,4)$.
(d) $\{(x, y, z): x, y, z \geq 0\}$
(3) Let V be the vector space of all continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$. Which of the following subsets of V are subspaces? Give a brief justification of you answer.
(a) $\{f: f(0)=2 f(5)\}$
(b) $\left\{f: f\left(x^{2}\right)=f(x)^{2}\right\}$
(c) $\left\{f: \int_{0}^{1} f(x) d x=0\right\}$
(d) $\left\{f: \int_{0}^{1} f(x) d x=1\right\}$
(4) Let V be a vector space and $U, W \subset V$ subspaces of V. Show that $U \cup W$ is a subspace of V if and only if $U \subseteq W$ or $W \subseteq U$.
(5) Let V be a vector space and $v_{1}, \ldots, v_{m} \in V$. Show that v_{1}, \ldots, v_{m} are linearly dependent if and only if one of v_{1}, \ldots, v_{m} can be written as a linear combination of the others. (This is a standard result and will be used often later in the term.)
(6) Let V be a vector space and $v_{1}, \ldots, v_{m} \in V$. Show that v_{1}, \ldots, v_{m} are linearly independent if and only if any $v \in \operatorname{Span}\left\{v_{1}, \ldots, v_{m}\right\}$ has a unique expression as a linear combination of v_{1}, \ldots, v_{m}. (Another standard result will be used repeatedly.)
(7) Let \mathcal{P}_{3} be the vector space of polynomials of degree ≤ 3. Which of the following sets are linearly independent. Justify your answer.
(a) $1, x, x^{3}$.
(b) $x^{3},(x+1)^{3},(x+2)^{3}$.
(c) $x^{2},(x+1)^{2},(x+2)^{2},(x+3)^{2}$.

The First Quiz.

The first quiz will be on Wednesday September 3 and will cover Chapter 3 of Schaum's Outline (systems linear of equations). Know the following:
(a) The three elementary operations $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3} on paper 63.
(b) Theorem 3.4 on page 63 on the equivalence of systems.
(c) Section 3.6 on Gaussian elimination pages 69-73

