Mathematics 700 Homework Due Wednesday, September 3

- (1) Let V be a vector space over \mathbf{F} and $S \subset V$ a non-empty subset of V. Show that S is a subspace of V if and only if $S = \mathrm{Span}(S)$.
- (2) Which of the following is a subspace of \mathbb{R}^3 . Give a brief justification of your answer.
 - (a) $\{(x, y, z) : 2x + 3y + 4z = 0\}$
 - (b) $\{(x, y, z) : 2x + 3y + 4z = 1\}$
 - (c) The line through (1,2,3) and parallel to (1,0,4).
 - (d) $\{(x, y, z) : x, y, z \ge 0\}$
- (3) Let V be the vector space of all continuous function $f : \mathbf{R} \to \mathbf{R}$. Which of the following subsets of V are subspaces? Give a brief justification of you answer.
 - (a) $\{f: f(0) = 2f(5)\}$
 - (b) $\{f: f(x^2) = f(x)^2\}$
 - (c) $\{f: \int_0^1 f(x) dx = 0\}$
 - (d) $\{f: \int_0^1 f(x) dx = 1\}$
- (4) Let V be a vector space and $U, W \subset V$ subspaces of V. Show that $U \cup W$ is a subspace of V if and only if $U \subseteq W$ or $W \subseteq U$.
- (5) Let V be a vector space and $v_1, \ldots, v_m \in V$. Show that v_1, \ldots, v_m are linearly dependent if and only if one of v_1, \ldots, v_m can be written as a linear combination of the others. (This is a standard result and will be used often later in the term.)
- (6) Let V be a vector space and $v_1, \ldots, v_m \in V$. Show that v_1, \ldots, v_m are linearly independent if and only if any $v \in \text{Span}\{v_1, \ldots, v_m\}$ has a unique expression as a linear combination of v_1, \ldots, v_m . (Another standard result will be used repeatedly.)
- (7) Let \mathcal{P}_3 be the vector space of polynomials of degree ≤ 3 . Which of the following sets are linearly independent. Justify your answer.
 - (a) $1, x, x^3$.
 - (b) x^3 , $(x+1)^3$, $(x+2)^3$.
 - (c) x^2 , $(x+1)^2$, $(x+2)^2$, $(x+3)^2$.

The First Quiz.

The first quiz will be on Wednesday September 3 and will cover Chapter 3 of *Schaum's Outline* (systems linear of equations). Know the following:

- (a) The three elementary operations E_1 , E_2 , and E_3 on paper 63.
- (b) Theorem 3.4 on page 63 on the equivalence of systems.
- (c) Section 3.6 on Gaussian elimination pages 69–73