Mathematics 700 Homework Due Monday, November 18

Definition 1. Let V be a vector space. Then a linear operator $P: V \to V$ is a projection iff $P^2 = P$.

You all know the proof of

Proposition 1. If $P: V \to V$ is a projection, then

 $V = \ker(P) \oplus \operatorname{Image}(P).$

There is a converse of sorts to this.

Proposition 2. Let $V = U \oplus W$. Then there is a unique projection $P: V \to V$ with

$$U = \ker(P), \qquad W = \operatorname{Image}(P).$$

Problem 1. Prove this. HINT: As $V = U \oplus W$ each $v \in V$ has a unique representation as v = u + w with $u \in U$ and $w \in W$. Set Pv = w and show this is linear and has the desired properties. Then show uniqueness.

Problem 2. Let $P: V \to V$ be a projection and set Q = I - P. Then show that $\operatorname{Image}(Q) = \ker(P)$ and $\ker(Q) = \operatorname{Image}(P)$ and

$$Q^2 = Q,$$
 $P + Q = I,$ $PQ = QP = 0,$ $V = \text{Image}(P) \oplus \text{Image}(Q).$

Problem 3. Let $P, Q: V \to V$ be projections such that

P + Q = I, and PQ = QP = 0.

Then show

$$V = \text{Image}(P) \oplus \text{Image}(Q)$$

HINT: No hard work required. Just reduce this to the last problem.

Definition 2. Let V be a vector space and W_1, \ldots, W_k non-zero subspaces of V. Then W_1, \ldots, W_k are **independent** iff

$$w_i \in W_i \text{ for } 1 \le i \le k \text{ and } \sum_{i=1}^k w_i = 0 \implies w_i = 0 \text{ for } 1 \le i \le k.$$

Definition 3. If V is a vector space and W_1, \ldots, W_k non-zero sub-spaces of V, then V is the **direct sum** of W_1, \ldots, W_k iff then are independent and span V. (By span we mean that $W_1 + \cdots + W_k = V$.) In this case we write

$$V = W_1 \oplus W_2 \oplus \dots \oplus W_k.$$

Problem 4. If V is finite dimensional and $V = W_1 \oplus \cdots \oplus W_k$, then show

$$\dim(V) = \sum_{i=1}^{k} \dim W_i.$$

Problem 5. Let V be a vector space and let $P_1, \ldots, P_k \colon V \to V$ be (i.e. $P_i^2 = P_i$) such that

$$i \neq j \implies P_i P_j = P_j P_i = 0$$

and

$$P_1 + P_2 + \dots + P_k = I.$$

Show

$$V = \text{Image}(P_1) \oplus \text{Image}(P_2) \oplus \cdots \oplus \text{Image}(P_k).$$

Problem 6. Let V be a vector space over the real numbers and let $S: V \to V$ be a linear operator on V. Assume that $A^2 - 5A + 6I = 0$. Show that

$$V = \ker(A - 2I) \oplus \ker(A - 3I).$$

HINT: If you are clever you can reduce this to Problem 3 above with P = aI + bAand Q = cI + dA for the right choice of scalars a, b, c, d.

Problem 7. Here is a determinant formula that every mathematician seems to know and love. Let

$$V(x_1, x_2, \dots, x_n) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$$

be the Vandermonde. Matrix Show

$$\det V(x_1, x_2, \dots, x_n) = \prod_{i < j} (x_j - x_i)$$

HINT: Use induction. Multiply each row by x_1 and substract it from the next row its the below it (this will not change the value of the determinant). Then you should find that

$$\det V(x_1, x_2, \dots, x_n) = (x_n - x_1)(x_{n-1} - x_1) \cdots (x_2 - x_1) \det V(x_2, x_3, \dots, x_n)$$