Mathematics 700 Homework
 Due Monday, November 18

Definition 1. Let V be a vector space. Then a linear operator $P: V \rightarrow V$ is a projection iff $P^{2}=P$.

You all know the proof of
Proposition 1. If $P: V \rightarrow V$ is a projection, then

$$
V=\operatorname{ker}(P) \oplus \operatorname{Image}(P)
$$

There is a converse of sorts to this.
Proposition 2. Let $V=U \oplus W$. Then there is a unique projection $P: V \rightarrow V$ with

$$
U=\operatorname{ker}(P), \quad W=\operatorname{Image}(P)
$$

Problem 1. Prove this. Hint: As $V=U \oplus W$ each $v \in V$ has a unique representation as $v=u+w$ with $u \in U$ and $w \in W$. Set $P v=w$ and show this is linear and has the desired properties. Then show uniqueness.

Problem 2. Let $P: V \rightarrow V$ be a projection and set $Q=I-P$. Then show that $\operatorname{Image}(Q)=\operatorname{ker}(P)$ and $\operatorname{ker}(Q)=\operatorname{Image}(P)$ and

$$
Q^{2}=Q, \quad P+Q=I, \quad P Q=Q P=0, \quad V=\operatorname{Image}(P) \oplus \operatorname{Image}(Q)
$$

Problem 3. Let $P, Q: V \rightarrow V$ be projections such that

$$
P+Q=I, \quad \text { and } \quad P Q=Q P=0
$$

Then show

$$
V=\operatorname{Image}(P) \oplus \operatorname{Image}(Q)
$$

Hint: No hard work required. Just reduce this to the last problem.
Definition 2. Let V be a vector space and W_{1}, \ldots, W_{k} non-zero subspaces of V. Then W_{1}, \ldots, W_{k} are independent iff

$$
w_{i} \in W_{i} \text { for } 1 \leq i \leq k \text { and } \sum_{i=1}^{k} w_{i}=0 \quad \Longrightarrow \quad w_{i}=0 \text { for } 1 \leq i \leq k
$$

Definition 3. If V is a vector space and W_{1}, \ldots, W_{k} non-zero sub-spaces of V, then V is the direct sum of W_{1}, \ldots, W_{k} iff then are independent and span V. (By span we mean that $W_{1}+\cdots+W_{k}=V$.) In this case we write

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

Problem 4. If V is finite dimensional and $V=W_{1} \oplus \cdots \oplus W_{k}$, then show

$$
\operatorname{dim}(V)=\sum_{i=1}^{k} \operatorname{dim} W_{i}
$$

Problem 5. Let V be a vector space and let $P_{1}, \ldots, P_{k}: V \rightarrow V$ be (i.e. $P_{i}^{2}=P_{i}$) such that

$$
i \neq j \quad \Longrightarrow \quad P_{i} P_{j}=P_{j} P_{i}=0
$$

and

$$
P_{1}+P_{2}+\cdots+P_{k}=I
$$

Show

$$
V=\operatorname{Image}\left(P_{1}\right) \oplus \operatorname{Image}\left(P_{2}\right) \oplus \cdots \oplus \operatorname{Image}\left(P_{k}\right)
$$

Problem 6. Let V be a vector space over the real numbers and let $S: V \rightarrow V$ be a linear operator on V. Assume that $A^{2}-5 A+6 I=0$. Show that

$$
V=\operatorname{ker}(A-2 I) \oplus \operatorname{ker}(A-3 I)
$$

Hint: If you are clever you can reduce this to Problem 3 above with $P=a I+b A$ and $Q=c I+d A$ for the right choice of scalars a, b, c, d.
Problem 7. Here is a determinant formula that every mathematician seems to know and love. Let

$$
V\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

be the Vandermonde. Matrix Show

$$
\operatorname{det} V\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{j}-x_{i}\right)
$$

Hint: Use induction. Multiply each row by x_{1} and substract it from the next row its the below it (this will not change the value of the determinant). Then you should find that

$$
\operatorname{det} V\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{n}-x_{1}\right)\left(x_{n-1}-x_{1}\right) \cdots\left(x_{2}-x_{1}\right) \operatorname{det} V\left(x_{2}, x_{3}, \ldots, x_{n}\right)
$$

