Mathematics 700 Homework Due Friday, November 1

The following is an important part of the duality theorem of vector spaces.

Theorem 1. Let V be a finite dimensional vector space and $S \subset V$ a non-empty subset of V. Then for $v \in V$

$$f(v) = 0$$
 for all $f \in S^{\perp} \implies v \in \operatorname{Span}(S)$.

Problem 6. Prove this. HINT: The theorem on page 111 of the class notes is relevant. \Box

Another basic result is

Theorem 2. Let V be a finite dimensional vector space and $S \subset V$ a non-empty subset of V. Then

$$(S^{\perp})^{\circ} = \operatorname{Span}(S).$$

In particular if W is a subspace to V, then $(W^{\perp})^{\circ} = W$.

Problem 7. Prove this. HINT: This follows easily from Theorem 1 above.

Frank's solution to Problem 5 on the last assignment.

We wish to show that if $f, f_1, \ldots, f_k \in V^*$ and

$$\ker(f_1) \cap \ker(f_2) \cap \dots \cap \ker(f_k) \subseteq \ker(f)$$

then f is a linear combination of f_1, \ldots, f_k . A restatement would be

(1) $\ker(f_1) \cap \ker(f_2) \cap \dots \cap \ker(f_k) \subseteq \ker(f) \implies f \in \operatorname{Span}\{f_1, \dots, f_k\}.$

Thus assume that

(2)
$$\ker(f_1) \cap \ker(f_2) \cap \dots \cap \ker(f_k) \subseteq \ker(f)$$

holds. From the second proposition on page 116 of the class notes, we know that for any subset $R \subset V^*$ that $R^\circ = \text{Span}(R)^\circ$. Therefore

$$\operatorname{Span}\{f\}^{\circ} = \{f\}^{\circ} = \{v \in V : f(v) = 0\} = \ker(f)$$

and likewise

$$Span\{f_1, \dots, f_k\}^{\circ} = \{f_1, \dots, f_k\}^{\circ}$$
$$= \{v \in V : f_1(v) = f_2(v) = f_k(v) = 0\}$$
$$= \ker(f_1) \cap \ker(f_2) \cap \dots \cap \ker(f_k).$$

Combining these with (2) gives

 $\operatorname{Span}{f_1,\ldots,f_k}^\circ \subseteq \operatorname{Span}{f}^\circ.$

Now the "dual form" of Problem 4a implies

$$\operatorname{Span}{f} \subseteq \operatorname{Span}{f_1, \dots, f_k}$$

Therefore $f \in \operatorname{Span}{f} \subseteq \operatorname{Span}{f_1, \dots, f_k}.$

<u>done.</u>