Mathematics 700 Homework

Due Friday, November 1
The following is an important part of the duality theorem of vector spaces.
Theorem 1. Let V be a finite dimensional vector space and $S \subset V$ a non-empty subset of V. Then for $v \in V$

$$
f(v)=0 \quad \text { for all } f \in S^{\perp} \quad \Longrightarrow \quad v \in \operatorname{Span}(S)
$$

Problem 6. Prove this. Hint: The theorem on page 111 of the class notes is relevant.

Another basic result is
Theorem 2. Let V be a finite dimensional vector space and $S \subset V$ a non-empty subset of V. Then

$$
\left(S^{\perp}\right)^{\circ}=\operatorname{Span}(S)
$$

In particular if W is a subspace to V, then $\left(W^{\perp}\right)^{\circ}=W$.
Problem 7. Prove this. Hint: This follows easily from Theorem 1 above.

Frank's solution to Problem 5 on the last assignment.

We wish to show that if $f, f_{1}, \ldots, f_{k} \in V^{*}$ and

$$
\operatorname{ker}\left(f_{1}\right) \cap \operatorname{ker}\left(f_{2}\right) \cap \cdots \cap \operatorname{ker}\left(f_{k}\right) \subseteq \operatorname{ker}(f)
$$

then f is a linear combination of f_{1}, \ldots, f_{k}. A restatement would be

$$
\begin{equation*}
\operatorname{ker}\left(f_{1}\right) \cap \operatorname{ker}\left(f_{2}\right) \cap \cdots \cap \operatorname{ker}\left(f_{k}\right) \subseteq \operatorname{ker}(f) \quad \Longrightarrow \quad f \in \operatorname{Span}\left\{f_{1}, \ldots, f_{k}\right\} \tag{1}
\end{equation*}
$$

Thus assume that

$$
\begin{equation*}
\operatorname{ker}\left(f_{1}\right) \cap \operatorname{ker}\left(f_{2}\right) \cap \cdots \cap \operatorname{ker}\left(f_{k}\right) \subseteq \operatorname{ker}(f) \tag{2}
\end{equation*}
$$

holds. From the second proposition on page 116 of the class notes, we know that for any subset $R \subset V^{*}$ that $R^{\circ}=\operatorname{Span}(R)^{\circ}$. Therefore

$$
\operatorname{Span}\{f\}^{\circ}=\{f\}^{\circ}=\{v \in V: f(v)=0\}=\operatorname{ker}(f)
$$

and likewise

$$
\begin{aligned}
\operatorname{Span}\left\{f_{1}, \ldots, f_{k}\right\}^{\circ} & =\left\{f_{1}, \ldots, f_{k}\right\}^{\circ} \\
& =\left\{v \in V: f_{1}(v)=f_{2}(v)=f_{k}(v)=0\right\} \\
& =\operatorname{ker}\left(f_{1}\right) \cap \operatorname{ker}\left(f_{2}\right) \cap \cdots \cap \operatorname{ker}\left(f_{k}\right) .
\end{aligned}
$$

Combining these with (2) gives

$$
\operatorname{Span}\left\{f_{1}, \ldots, f_{k}\right\}^{\circ} \subseteq \operatorname{Span}\{f\}^{\circ}
$$

Now the "dual form" of Problem 4a implies

$$
\operatorname{Span}\{f\} \subseteq \operatorname{Span}\left\{f_{1}, \ldots, f_{k}\right\}
$$

Therefore $f \in \operatorname{Span}\{f\} \subseteq \operatorname{Span}\left\{f_{1}, \ldots, f_{k}\right\}$.

