Mathematics 700 Homework Due Wednesday, October 23

Problem 1. Let $\sigma^1, \sigma^2, \ldots, \sigma^n$ be a basis for \mathbf{F}^{n*} , which we view as a space of row vectors. Let

$$S := \begin{bmatrix} \sigma^1 \\ \sigma^2 \\ \vdots \\ \sigma^n \end{bmatrix}$$

be the matrix with rows $\sigma^1, \sigma^2, \ldots, \sigma^n$. Then show that the columns v_1, v_2, \ldots, v_n of S^{-1} are the basis of \mathbf{F}^n dual to $\sigma^1, \sigma^2, \ldots, \sigma^n$.

Problem 2. Let \mathcal{P}_n be the vector space of polynomials over \mathbf{F} of degree $\leq n$. Let z_0, z_1, \ldots, z_n be distinct elements of \mathbf{F} and define $f_0, f_1, \ldots, f_n \in \mathcal{P}_n^*$ by

$$f_i(p(x)) = p(z_i).$$

Show that f_0, f_1, \ldots, f_n are a basis of \mathcal{P}_n^* and find the basis of \mathcal{P}_n dual to this basis. HINT: In different language we have already done this problem. If we can find polynomials $\ell_0, \ell_1, \ldots, \ell_n$ so that

$$\ell_i(z_j) = \delta_{ij}$$

then you should be able to show that $\ell_0, \ell_1, \ldots, \ell_n$ is the required basis of \mathcal{P}_n and use them to show that f_1, f_2, \ldots, f_n are independent.

Problem 3. On \mathcal{P}_2 define linear functionals $\Lambda_1, \Lambda_2, \Lambda_3$ by

$$\Lambda_i(p) := \int_0^1 p(x) x^i \, dx \quad \text{for} \quad 1 \le i \le 3.$$

Show $\Lambda_1, \Lambda_2, \Lambda_3$ is a basis for \mathcal{P}_2^* and find the basis of \mathcal{P}_2 dual to this basis.