Mathematics 700 Homework

Due Wednesday, October 23
Problem 1. Let $\sigma^{1}, \sigma^{2}, \ldots, \sigma^{n}$ be a basis for $\mathbf{F}^{n *}$, which we view as a space of row vectors. Let

$$
S:=\left[\begin{array}{c}
\sigma^{1} \\
\sigma^{2} \\
\vdots \\
\sigma^{n}
\end{array}\right]
$$

be the matrix with rows $\sigma^{1}, \sigma^{2}, \ldots, \sigma^{n}$. Then show that the columns $v_{1}, v_{2}, \ldots, v_{n}$ of S^{-1} are the basis of \mathbf{F}^{n} dual to $\sigma^{1}, \sigma^{2}, \ldots, \sigma^{n}$.

Problem 2. Let \mathcal{P}_{n} be the vector space of polynomials over \mathbf{F} of degree $\leq n$. Let $z_{0}, z_{1}, \ldots, z_{n}$ be distinct elemnts of \mathbf{F} and define $f_{0}, f_{1}, \ldots, f_{n} \in \mathcal{P}_{n}^{*}$ by

$$
f_{i}(p(x))=p\left(z_{i}\right)
$$

Show that $f_{0}, f_{1}, \ldots, f_{n}$ are a basis of \mathcal{P}_{n}^{*} and find the basis of \mathcal{P}_{n} dual to this basis. Hint: In different language we have already done this problem. If we can find polynomials $\ell_{0}, \ell_{1}, \ldots, \ell_{n}$ so that

$$
\ell_{i}\left(z_{j}\right)=\delta_{i j}
$$

then you should be able to show that $\ell_{0}, \ell_{1}, \ldots, \ell_{n}$ is the required basis of \mathcal{P}_{n} and use them to show that $f_{1} . f_{2}, \ldots, f_{n}$ are independent.

Problem 3. On \mathcal{P}_{2} define linear functionals $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ by

$$
\Lambda_{i}(p):=\int_{0}^{1} p(x) x^{i} d x \quad \text { for } \quad 1 \leq i \leq 3
$$

Show $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ is a basis for \mathcal{P}_{2}^{*} and find the basis of \mathcal{P}_{2} dual to this basis.

