Mathematics 700 Homework
 Due Monday, October 21

The first several problems are to give you some basic facts about companion matrices in the special case $n=4$. All of this generalizes to all $n \geq 1$, but let's start concretely. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis of \mathbf{F}^{4}. That is

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad e_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $p(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a monic (that is lead coeffiecent one) polynomial. The companion matrix of $p(x)$ is the matrix

$$
C:=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & -a_{3}
\end{array}\right]
$$

Problem 1. Show $\operatorname{char}_{C}(x)=p(x)$. That is $p(x)$ is the characteristic polynomial of C.

Let

$$
v(\lambda)=\left[\begin{array}{c}
1 \\
\lambda \\
\lambda^{2} \\
\lambda^{3}
\end{array}\right]=e_{1}+\lambda e_{2}+\lambda^{2} e_{3}+\lambda^{3} e_{4}
$$

Problem 2. Show

$$
C v(\lambda)=\lambda v(\lambda)-p(\lambda) e_{4}
$$

and thus if $p(\lambda)=0$, then $v(\lambda)$ is an eigenvector for C with eigenvalue λ.
Problem 3. If $p(x)$ has four distinct root $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4}, and let P be the matrix with columns $v\left(\lambda_{1}\right), v\left(\lambda_{2}\right), v\left(\lambda_{3}\right), v\left(\lambda_{4}\right)$, that is,

$$
P=\left[v\left(\lambda_{1}\right), v\left(\lambda_{2}\right), v\left(\lambda_{3}\right), v\left(\lambda_{4}\right)\right]
$$

(this is our old friend the Vandermonde matrix) then

$$
P^{-1} C P=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right]
$$

Here are some problems related to linear functionals and hyperplanes. (The relation between the two being that hyperplanes are the kernels of nonzero linear functionals and the kernel of a linear functional determines it up to multiplication by a scalar.)

Problem 4. Find the basis of $\mathbf{R}^{3 *}$ dual to the basis

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
4 \\
5 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right] .
$$

of \mathbf{R}^{3}.
Problem 5. Let W be a hyperplane in the finite dimensional vector space V and let $v_{0} \in V$ with $v_{0} \notin W$. Then show every vector $v \in V$ can be uniquely written as $v=w+c v_{0}$ where $w \in W$ and $c \in \mathbf{F}$ is a scalar.
Problem 6. Let V be a finite dimensional vector and $f \in V^{*}$ a non-zero linear functional. Let $g: V \rightarrow \mathbf{F}$ be linear so that ker $f \subseteq \operatorname{ker} g$. Then show there is a scalar $c \in \mathbf{F}$ with $g=c f$. Hint: Let $W:=\operatorname{ker} f$. Then W is a hyperplane in V. Let $v_{0} \in V$ with $v_{0} \notin W$. Let $c=g\left(v_{0}\right) / f\left(v_{0}\right)$. Then use the last problem to show $g=c f$.
Problem 7. Let $M_{2 \times 2}(\mathbf{R})$ be the vector space of 2×2 matrices over the real numbers \mathbf{R}. Let $f: M_{2 \times 2}(\mathbf{R}) \rightarrow \mathbf{R}$ be a linear functional so $f(A B)=f(B A)$ for all $A, B \in$ $M_{2 \times 2}(\mathbf{R})$. Show there is a scalar $c \in \mathbf{R}$ so that $f(A)=c \operatorname{tr}(A)$ for all $A \in M_{2 \times 2}(\mathbf{R})$. Hint: Both f and tr are linear functionals on $M_{2 \times 2}(\mathbf{R})$ so it is enough to show $\operatorname{ker}(\operatorname{tr}) \subseteq \operatorname{ker}(f)$. Show $\operatorname{ker}(\operatorname{tr})=\operatorname{Span}\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$. Now $f(A B)=$ $f(B A)$ and linearity imply $f(A B-B A)=0$ for all $A, B \in M_{2 \times 2}(\mathbf{R})$. Use this to show $f(C)=0$ for $C=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. (You should compare this with Problem 2 on the January 1985 qualifying exam.)

