Mathematics 700, Test \#2

Show your work to get credit. An answer with no work will not get credit.

1. Find the Smith normal form over the integers of the matrix

$$
A=\left[\begin{array}{cc}
4 & 6 \\
8 & 10 \\
14 & 12
\end{array}\right]
$$

2. Find the invariant factors of the following matrices.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad(\text { with } b \neq 0) .
$$

3. Let $\mathcal{P}_{1}=\operatorname{Span}\{1, x\}$ be the real polynomials of degree ≤ 1 with real coefficients and define two linear functionals $\Lambda_{1}, \Lambda_{2}: \mathcal{P}_{1} \rightarrow \mathbf{R}$ by

$$
\Lambda_{1}(p):=\int_{0}^{1} p(x) d x, \quad \Lambda_{2}(p)=\int_{0}^{1} x p(x) d x .
$$

Find the basis of \mathcal{P}_{1} that is dual to $\left\{\Lambda_{1}, \Lambda_{2}\right\}$.
4. Let A be an $n \times n$ matrix with real entries so that $A^{t}=A^{-1}$. Then show that $\operatorname{det}(A)=$ ± 1.
5. If $T: V \rightarrow V$ is a linear operator on the vector space V that satisfies $T^{2}=I$, then show that the only eigenvalues of T are 1 and -1 .
6. Let D be an invertible $n \times n$ matrix and N a $n \times n$ matrix so that $D N=N D$ and $N^{3}=0$. Show that $D+N$ is invertible.
7. Let A be a real 2×2 matrix so that $A^{2}-3 A+2 I_{2}=0$. Show that A is similar to one of the following three matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

8. Let A be an $n \times n$ matrix over the reals with $\operatorname{det}(A) \neq 0$. Show that

$$
\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-1}
$$

Hint: Recall that $A \operatorname{adj}(A)=\operatorname{det}(A) I$.

Instructions

This is to be done in three hours in one setting. I would prefer that it is closed book, but if you feel that you have to look up a something write me a note like "I looked up the definition of rank and used it in problems numbers 31 and 57 ". I will then take a little off on these problems, say 20%. It would also make my life a little easier if you worked each problem on a separate sheet of paper. This is due in class Monday November 21.

As to studying for it, here a couple of our recent topics you should certainly know before taking the exam. How to find the Smith normal form of a matrix over a Euclidean domain. How to find the invariant factors of a matrix over a field.

