Mathematics 700 Test \#1
 Name:

Show your work to get credit. An answer with no work will not get credit.

1. (15 Points) Define the following:
(a) Linear independence.
(b) The span of a subset S of a vector space V.
(c) The vector space V is direct sum of its subspaces U and W.
2. (10 Points) Find (no proof required) a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ so that

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

3. (10 Points) Let v_{1}, v_{2}, v_{3} be linearly independent vectors in a vector space V. Then show that the vectors $v_{1}, 2 v_{1}+v_{2}, 3 v_{1}+2 v_{2}+v_{3}$ are also linearly independent.
4. (10 Points) Let $M_{2 \times 2}$ be the 2 by 2 matrics over the field \mathbb{F} and let

$$
\mathcal{D}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]: a, b \in \mathbb{F}\right\}
$$

be the subspace of diagonal matrices. Show that any three dimensional subspace of $M_{2 \times 2}$ contains a nonzero diagonal matrix.
5. (10 Points) Find (no proof required) a basis for the set of the space of vectors $(x, y, z, w) \in \mathbb{R}^{4}$ that satisfy

$$
\begin{aligned}
& x+y+z+w=0 \\
& x+y+2 z+3 w=0 .
\end{aligned}
$$

6. (15 Points) Show that if v_{1}, \ldots, v_{k} are vectors in the vector space V and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ are scalars so that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0, \quad \text { and } \quad c_{k} \neq 0
$$

then

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}=\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\} .
$$

7. (15 Points) Let U and W be subspaces of a vector space so that

$$
\operatorname{dim} U=3, \quad \operatorname{dim} W=4, \quad \operatorname{dim}(U \cap W)=2
$$

Then show directly, that is without using the theorem that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-$ $\operatorname{dim} U \cap W$, that $\operatorname{dim}(U+W)=5$. (So you are being ask to prove $\operatorname{dim}(U+W)=\operatorname{dim} U+$ $\operatorname{dim} W-\operatorname{dim}(U \cap W)$ in this special case.)
8. (15 Points) Let $\mathcal{U}=\left\{u_{1}, u_{2}\right\}$ and $\mathcal{W}=\left\{w_{1}, w_{2}, w_{3}\right\}$ be two linearly independent sets in a vector space V such that $\mathcal{U} \cup \mathcal{W}$ is linearly independent. Then show

$$
\operatorname{Span}(\mathcal{U}) \cap \operatorname{Span}(\mathcal{W})=\{0\}
$$

