CHANGE OF BASES AND SUMS OF POWERS OF INTEGERS

RALPH HOWARD
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, S.C. 29208, USA
HOWARD@MATH.SC.EDU

1. Some Bases of the Polynomials of Degree $\leq n$.

Let \mathcal{P}_{n} be the vector space of real polynomials of degree $\leq n$. That is

$$
\mathcal{P}_{n}:=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{0}, \ldots, a_{n} \in \mathbf{R}\right\} .
$$

We have seen that $\operatorname{dim} \mathcal{P}_{n}=n+1$ and that it has the "usual" basis

$$
\mathcal{U}:=\left\{1, x, \ldots, x^{n}\right\}
$$

coming from the powers of x. In different problems there different bases of \mathcal{P}_{n} that are better adapted to the problem. For example let $a \in \mathbf{R}$ then the ordered basis

$$
\mathcal{A}:=\left\{1,(x-a), \frac{(x-a)^{2}}{2}, \frac{(x-a)^{3}}{3!}, \ldots, \frac{(x-a)^{n}}{n!}\right\}
$$

has the property that if $f(x) \in \mathcal{P}_{n}$ is expressed in this basis:

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} a_{k} \frac{(x-a)^{k}}{k!} \tag{1.1}
\end{equation*}
$$

then the coordinate a_{0}, \ldots, a_{n} are given by

$$
a_{k}=f^{(k)}(a)
$$

where $f^{(k)}$ is the k-th derivative of $f(x)$ (and $f^{(0)}=f$ be definition).
Problem 1. Derive this formula for a_{k} by taking the k-th derivative of both sides of (1.1) and then setting $x=a$. (Note this is exactly the usual derivation of the coefficients in a Taylor series that you know and love from calculus.)

In our terminology the coordinate vector of the vector $f(x) \in \mathcal{P}_{n}$ is

$$
[f(x)]_{\mathcal{A}}=\left[\begin{array}{c}
f(a) \\
f^{\prime}(a) \\
f^{\prime \prime}(a) \\
\vdots \\
f^{(n-1)}(a) \\
f^{(n)}(a)
\end{array}\right]
$$

which is just the list of the values of the derivatives of $f(x)$ at $x=a$. So in a context where one is working with the derivatives of polynomials at the point $x=a$ the basis \mathcal{A} is the natural one to use.

2. Formulas for Sums of Powers.

We now give a basis of \mathcal{P}_{n} were it is easy to derive "summation formulas" (the precise meaning of this will be cleared up below) and then by expessing the usual basis $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ in terms of this basis we can derive formulas for sums of powers. This is a theme we will see repeatedly during the term: Make a problem easier by changing to a nicer basis. Set

$$
S_{0}(x):=1
$$

and for $1 \leq k \leq n$ set

$$
S_{k}(x):=x(x-1)(x-2) \cdots(x-k+1)
$$

This has k factors and so has degree k. For small values of k we have

$$
\begin{aligned}
& S_{0}(x)=1 \\
& S_{1}(x)=x \\
& S_{2}(x)=x(x-1) \\
& S_{3}(x)=x(x-1)(x-2), \\
& S_{4}(x)=x(x-1)(x-2)(x-3) .
\end{aligned}
$$

Let

$$
\mathcal{S}:=\left\{S_{0}(x), S_{1}(x), \ldots, S_{n}(x)\right\} .
$$

Then \mathcal{S} is an ordered basis of \mathcal{P}_{n}. We now define the change of basis matrices between the usual basis \mathcal{U} and the basis \mathcal{S} by

$$
S_{k}(x)=\sum_{i=0}^{k} a_{k i} x^{i}
$$

and

$$
\begin{equation*}
x^{k}=\sum_{i=0}^{k} b_{k i} S_{i}(x) . \tag{2.1}
\end{equation*}
$$

So for example
$S_{3}(x)=x(x-1)(x-2)=x^{3}-3 x^{2}+2 x=a_{33} x^{3}+a_{32} x^{2}+a_{31} x+a_{30} 1$
which implies

$$
a_{33}=1, \quad a_{32}=-3, \quad a_{31}=2, \quad a_{30}=0
$$

Likewise
$x^{3}=S_{3}(x)+3 S_{2}(x)+S_{1}(x)=b_{33} S_{3}(x)+b_{32} S_{2}(x)+b_{31} S_{1}(x)+b_{30} S_{0}(x)$
yielding

$$
b_{33}=1, \quad b_{32}=3, \quad b_{31}=1, \quad b_{30}=0
$$

Problem 2. Show that $A B=B A=I_{n+1}$ on \mathcal{P}_{n}.
On \mathcal{P}_{6} the matrices $A=\left[a_{k i}\right]$ and $B=\left[b_{k i}\right]$ are 7 by 7 matrices given explicitly by

$$
A=\left[a_{k i}\right]=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & -3 & 1 & 0 & 0 & 0 \\
0 & -6 & 11 & -6 & 1 & 0 & 0 \\
0 & 24 & -50 & 35 & -10 & 1 & 0 \\
0 & -120 & 274 & -225 & 85 & -15 & 1
\end{array}\right]
$$

and

$$
B=\left[b_{k i}\right]=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 & 0 & 0 \\
0 & 1 & 7 & 6 & 1 & 0 & 0 \\
0 & 1 & 15 & 25 & 10 & 1 & 0 \\
0 & 1 & 31 & 90 & 65 & 15 & 1
\end{array}\right]
$$

In matrix notation this means

$$
\left[\begin{array}{l}
S_{0}(x) \\
S_{1}(x) \\
S_{2}(x) \\
S_{3}(x) \\
S_{4}(x) \\
S_{5}(x) \\
S_{6}(x)
\end{array}\right]=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & -3 & 1 & 0 & 0 & 0 \\
0 & -6 & 11 & -6 & 1 & 0 & 0 \\
0 & 24 & -50 & 35 & -10 & 1 & 0 \\
0 & -120 & 274 & -225 & 85 & -15 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3} \\
x^{4} \\
x^{5} \\
x^{6}
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3} \\
x^{4} \\
x^{5} \\
x^{6}
\end{array}\right]=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 & 0 & 0 \\
0 & 1 & 7 & 6 & 1 & 0 & 0 \\
0 & 1 & 15 & 25 & 10 & 1 & 0 \\
0 & 1 & 31 & 90 & 65 & 15 & 1
\end{array}\right]\left[\begin{array}{l}
S_{0}(x) \\
S_{1}(x) \\
S_{2}(x) \\
S_{3}(x) \\
S_{4}(x) \\
S_{5}(x) \\
S_{6}(x)
\end{array}\right] .
$$

Problem 3. Check that the the values for $a_{k i}$ and $b_{k i}$ are correct for $i, k \leq 4$.

There are some obvious patterns in these matrices.
Problem 4. Show the following:

1. $a_{k k}=b_{k k}=1$ for all $k \geq 0$.
2. $a_{k 0}=b_{k 0}=0$ for $k \geq 1$.
3. The signs in the matrix A have a chess board pattern. That is $(-1)^{i+k} a_{k i} \geq 0$.
4. $a_{k k-1}=-b_{k k-1}$. (Not easy, use that $A B=I$.)
5. $b_{k i} \geq 0$ for all i, k. (Hard.)
6. $b_{k 1}=1$ for $k \geq 1$. (Hard.)

From the point of view of summation formulas what makes the $S_{k}(x)$ nice is the relation:

$$
S_{k}(x)=\frac{1}{k+1}\left(S_{k+1}(x+1)-S_{k+1}(x)\right)
$$

which holds for $k \geq 0$.
Problem 5. Verify this formula.
The standard trick with telescoping series shows that

$$
\begin{aligned}
S_{k}(0)+S_{k}(1)+S_{k}(2)+\cdots+S_{k}(N) & =\frac{1}{k+1}\left(S_{k+1}(N+1)-S_{k+1}(0)\right) \\
& =\frac{1}{k+1} S_{k+1}(N+1)
\end{aligned}
$$

(At the last step we have used $S_{k+1}(0)=0$.)
Problem 6. Verify this.
In summation notation this is

$$
\begin{equation*}
\sum_{j=0}^{N} S_{k}(j)=\frac{1}{k+1} S_{k+1}(N+1) \tag{2.2}
\end{equation*}
$$

Now we can give formulas for sums of powers of integers. Using equations (2.1) and (2.2) we have

$$
\begin{aligned}
\sum_{j=0}^{N} j^{k} & =\sum_{j=0}^{N} \sum_{i=0}^{k} b_{k i} S_{i}(j) \\
& =\sum_{i=0}^{k} b_{k i} \sum_{j=0}^{N} S_{i}(j) \\
& =\sum_{i=0}^{k} b_{k i} \frac{1}{i+1} S_{i+1}(N+1) .
\end{aligned}
$$

For small values of k this gives

$$
\begin{aligned}
& \sum_{j=0}^{N} j=b_{11} \frac{1}{2} S_{2}(N+1)+b_{10} S_{1}(N+1) \\
& \sum_{j=0}^{N} j^{2}=b_{22} \frac{1}{3} S_{3}(N+1)+b_{21} \frac{1}{2} S_{1}(N+1)+b_{20} S_{0}(N+1) \\
& \sum_{j=0}^{N} j^{3}=b_{33} \frac{1}{4} S_{3}(N+1)+b_{32} \frac{1}{3} S_{1}(N+1)+b_{31} \frac{1}{2} S_{0}(N+1) \\
& \quad+b_{30} S_{0}(N+1)
\end{aligned}
$$

Problem 7. Use these to derive the familiar formulas for $\sum_{j=0}^{N} j$, $\sum_{j=0}^{N} j^{2}$, and $\sum_{j=0}^{N} j^{3}$.

