Mathematics 700 Final

Show your work to get credit. An answer with no work will not get credit.

- 1. Define the following:
 - (a) eigenvalue.

Let $T: V \to V$ be linear map (where V is a vector space over the field of scalars **F**). Then $\lambda \in \mathbf{F}$ is an *eigenvalue* iff there is nonzero vector $v \in V$ so that $Tv = \lambda v$. REMARK: It was popular to define an eigenvalue to be a root of the characteristic equation $\det(\lambda I - T) = 0$. That such roots are the eigenvalues is the conclusion of a theorem, not the definition.

(b) eigenvector.

Let $T: V \to V$ be linear map (where V is a vector space over the field of scalars **F**). Then $v \in V$ is an *eigenvector* iff v is nonzero and there is a scalar $\lambda \in \mathbf{F}$ so that $Tv = \lambda v$. (c) coordinates of a vector relative to a basis.

Let V have $\mathcal{V} = \{v_1, \ldots, v_n\}$ as an ordered basis. Then any vector $x \in V$ can be uniquely written as $x = x_1v_1 + x_2v_2 + \cdots + x_nv_n$ were $x_1, x_2, \ldots, x_n \in \mathbf{F}$. Then the column vector

$$[x]_{\mathcal{V}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

is the coordinate vector of x in the basis \mathcal{V} and the scalars x_1, x_2, \ldots, x_n are the coordinates of x in this basis.

- (d) the three elementary row operations.
 - The elementary row operations over a commutative ring R are:
 - (i) Multiplying a row by an invertible element of R.
 - (ii) Interchanging two rows.
 - (iii) Adding a scalar multiple of one row to another row.
- (e) the Smith Normal Form of a matrix over a Euclidean domain.

Let $A \in M_{m \times n}(R)$. Then F is a the Smith normal form of A iff F is equivalent to F by elementary row and column operations and F is diagonal of the form

$$F = \begin{bmatrix} f_1 & & & & \\ & f_2 & & & \\ & & \ddots & & \\ & & & f_r & & \\ & & & & 0 & \\ & & & & \ddots \end{bmatrix}$$

where the elements f_1, f_2, \ldots, f_r are nonzero and satisfy $f_1 \mid f_2 \mid \cdots \mid f_{r-1} \mid f_r$. (f) V is the direct sum of W_1, \ldots, W_k .

The vector space V is a **direct sum** of W_1, \ldots, W_k iff $W_1 \cup \cdots \cup W_k$ spans V and every elment $v \in V$ can be uniquely expressed as $v = w_1 + w_2 + \cdots + w_k$ with $w_i \in W_i$.

2. Let V be a vector space and let $v_1, \ldots, v_n \in V$ be linearly independent vectors. Let $v \in V$ be a vector so that $v \notin \text{Span}\{v_1, \ldots, v_n\}$. Show that $\{v_1, \ldots, v_n, v\}$ is a linearly independent set.

Solution: To show that $\{v_1, \ldots, v_n, v\}$ is a linearly independent set we need to show that if the linear combination

$$a_1v_1 + \dots + a_nv_n + av = 0$$

(

then all of the scalars a_1, \ldots, a_n, a are zero. First we note that a = 0, for iff not we can solve $a_1v_1 + \cdots + a_nv_n + av = 0$ for v to get

$$v = \frac{-a_1}{a}v_1 + \frac{-a_2}{a}v_n + \dots + \frac{-a_n}{a}v_n \in \operatorname{Span}\{v_1, \dots, v_n\}$$

contradiction the assumption that $v \notin \text{Span}\{v_1, \ldots, v_n\}$. Using a = 0 in (1) implies

$$a_1v_1 + \dots + a_nv_n = 0.$$

But as $\{v_1, \ldots, v_n\}$ is linearly independent this implies that $a_1 = a_2 = \cdots = a_n = 0$ as required.

3. Let $M_{k \times k}(\mathbf{R})$ be the vector space of $k \times k$ matrices over the real numbers. $T: M_{3 \times 3}(\mathbf{R}) \to M_{2 \times 2}(\mathbf{R})$ be linear. Show there is a nonzero symmetric matrix, A, so that T(A) = 0. (Recall that A is symmetric iff $A^t = A$ where A^t is the transpose of A.)

Solution: Let $S \subset M_{3\times 3}(\mathbf{R})$ be the subspace of $M_{3\times 3}(\mathbf{R})$ of symmetric matrices. Then $\dim S = 6$ as it as for a basis

$$\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \right\}$$

Let $S = T|_{\mathcal{S}}$ be the restriction of T to \mathcal{S} . Then $S: \mathcal{S} \to M_{2 \times 2}(\mathbf{R})$ and $\dim M_{2 \times 2}(\mathbf{R}) = 4$. Therefore rank S + nullity S = 6 implies that nullity $S = \dim \ker S \ge 2$. Therefore $\ker S \ne \{0\}$. So letting A be a nonzero element of $\ker S \subseteq \mathcal{S}$ and using that S is the restriction of T we see that T(A) = S(A) = 0. Thus A is a nonzero symmetric matrix with T(A) = 0.

4. What is the Jordan canonical form, over the complex numbers, of a matrix that has elementary divisors x - 1, $(x - 1)^2$, $x^2 - 6x + 25$, $(x^2 - 6x + 25)^2$?

Solution: Over the complex numbers we have the factorization $x^2 - 6x + 25 = (x - (3 + 4i))(x - (3 - 4i))$. Therefore the Jordan canonical form will consist of the block diagonal matrix with the Jordan blocks for (x - 1), $(x - 1)^2$, (x - (3 + 4i)), $(x - (3 + 4i))^2$, (x - (3 - 4i)), and $(x - (3 - 4i))^2$ along the diagonal. That is the Jordan form is

$$\begin{bmatrix} 1 & & & & & \\ & 1 & & & \\ & 1 & 1 & & & \\ & & 3+4i & & & \\ & & & 1 & 3+4i & & \\ & & & & 3-4i & & \\ & & & & & 3-4i & \\ & & & & & 1 & 3-4i \end{bmatrix}$$

where all unspecified elements are zero.

5. Let

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & -1 \\ 3 & 4 & 1 & 1 \end{bmatrix}$$

Then for A find

(a) The invariant factors.

Solution: By definition the invariant factors of A are the invariant factors of xI - A over the Euclidean domain $\mathbf{R}[x]$. As this is block lower triangular we have

$$det(xI - A) = det \begin{bmatrix} x & -1 \\ -1 & x \end{bmatrix} det \begin{bmatrix} x - 1 & 1 \\ -1 & x - 1 \end{bmatrix}$$
$$= (x^2 - 1)((x - 1)^2 + 1)$$
$$= (x - 1)(x + 1)(x^2 + 2x + 2).$$

This has distinct prime factors so the elementary divisors of xI - A are $f_1 = f_2 = f_3 = 1$ and $f_4 = (x - 1)(x + 1)(x^2 + 2x + 2)$. (This is because $f_1 | f_2 | f_3 | f_4$ and $f_1f_2f_3f_4 = (x - 1)(x + 1)(x^2 + 2x + 2)$. So if $f_3 \neq 1$, then the then $f_3^2 | (x - 1)(x + 1)(x^2 + 2x + 2)$ so that the square of some non-constant polynomial would divide $(x - 1)(x + 1)(x^2 + 2x + 2)$. As this is not the case we have $f_3 = 1$.)

(b) The elementary divisors.

Solution: The elementary divisors are the prime power factors of the invariant factors. So in this case they are $q_1 = x - 1$, $q_2 = x + 1$, $q_3 = x^2 - 2x + 2$.

- (c) The minimal polynomial. **Solution:** The minimal polynomial is just the invariant factor of largest degree. That is $\min_A(x) = f_x = (x-1)(x+1)(x^2+2x+2).$
- (d) The rational canonical form over the reals.Solution: The rational canonical form is the block diagonal matrix with the companion matrices of the elementary divisors along the diagonal. This is

$\lceil 1 \rceil$	0	0	0
0	-1	0	0
0	0	0	-2
0	0	1	2

6. Let V be a finite dimensional vector space over the real numbers \mathbf{R} and let W be a subspace of V. Assume that there are vectors $v_1, v_2 \in V$ so that

$$v_1 \notin W$$
 and $v_2 \notin \operatorname{Span}(\{v_1\} \cup W\}).$

There show there is a linear functional $f \in V^*$ so that f(w) = 0 for all $w \in W$, $f(v_1) = 1$ and $f(v_2) = 2$.

Solution: We know that a given in finite dimensional vector spaces we can separate a vector not in a subspace form a subspace by a linear functional. This means that we can find linear functionals $f_1, f_2 \in V^*$ so that

 $f_1(v_1) = 1$, and $f_1(w) = 0$ for all $w \in W$

and

$$f_2(v_2) = 1$$
 and $f_2(x) = 0$ for all $x \in \text{Span}(\{v_1\} \cup W\}).$

Let f be the linear combination of f_1 and f_2 given by

$$f = f_1 + (2 - f_1(v_2))f_2$$

(Note that $(2 - f_1(v_2))$ is a scalar so this is a linear combination.) Then if $w \in W$ we have $f(w) = f_1(w) + (2 - f_1(v_2)) f_2(w) = 0$

$$f(w) = f_1(w) + (2 - f_1(v_2))f_2(w) = 0$$

as f_1 and f_2 are both zero on W. Next

$$f(v_1) = f_1(v_1) + (2 - f_1(v_2))f_2(v_1) = 1 + 0 = 1$$

as $f_1(v_1) = 1$ and $f_2(v_1) = 0$. And to finish

$$f(v_2) = f_1(v_1) + (2 - f_1(v_2))f_2(v_2) = f_1(v_1) + (2 - f_1(v_2)) = 2$$

as $f_2(v_2) = 1$.

7. Let V be a finite dimensional vector space over the complex numbers and $P: V \to V$ a linear map so that $P^2 = P$. Show that trace $P = \operatorname{rank} P$

Solution: We know that if $P^2 = P$ (that is P is a projection) that $V = \text{image } P \oplus \ker P$. (This can be seen directly as for $v \in V$ we have v = Pv + (v - Pv) and $P(v - Pv) = Pv - P^2v = Pv - Pv = 0$ so that $v - Pv \in \ker P$. Therefore image $P + \ker P = V$. But if $v \in \text{image } P \cap \ker P$ then we have v = Px for some x. Then $Pv = P^2x = Px = v$. Therefore, as also $v \in \text{image } P$, v = Pv = 0. Thus image $P \cap \ker P = \{0\}$. But image $P + \ker P = V$ and image $P \cap \ker P = \{0\}$ imply that $V = V = \text{image } P \oplus \ker P$. Let $n = \dim V$ and $r = \dim \text{image } P \oplus \ker P = \{0\}$ imply that $V = V = \text{image } P \oplus \ker P$. Let $n = \dim V$ and $r = \dim \text{image } P = \text{rank } P$ and choose a basis v_1, \ldots, v_r of image P and then a basis of v_{r+1}, \ldots, v_n of ker P. Then $\{v_1, \ldots, v_n\}$ is a basis of V. If $1 \le i \le r$ then $v_i \in \text{image } P$ so that $v_i = Px_i$ for some $x_i \in V$. But then $Pv_i = P^2x_i = Px_i = v_i$. If $r + 1 \le j \le n$ then $v_j \in \ker P$ and so $Pv_j = 0$. Summarizing:

$$Pv_i = \begin{cases} v_i, & 1 \le i \le r; \\ 0, & r+1 \le i \le n \end{cases}$$

This implies the matrix of P in the basis $\mathcal{V} = \{v_1, \ldots, v_n\}$ is the block matrix

$$[P]_{\mathcal{V}} = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

where I_r is the $r \times r$ identity matrix. But then trace $P = \text{trace}[P]_{\mathcal{V}} = r = \text{rank } P$. 8. Let $\mathcal{P}_2 = \text{Span}\{1, x, x^2\}$ be the real polynomials of degree ≤ 2 . Define $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$T(p)(x) = p(x+1).$$

Let \mathcal{P}_2^* be the dual space to \mathcal{P}_2 and let $\Lambda \in \mathcal{P}_2^*$ be the functional

$$\Lambda(p) = p(-3).$$

Then compute $\langle x^2, T^*\Lambda \rangle$.

Solution: This is just a case through the definitions:

$$\langle x^2, T^*\Lambda \rangle = \langle Tx^2, \Lambda \rangle$$

= $\langle (x+1)^2, \Lambda \rangle$
= $(-3+1)^2$
= 4.

9. A 5×5 real matrix A has minimal polynomial $\min_A(x) = (x-1)^2(x-2)(x-3)$ and trace(A) = 10. What is the rational canonical form for A?

Solution: Let f_1, \ldots, f_5 be the invariant factors of A. Then f_5 is the minimal polynomial of A and so $f_5 = (x-1)^2(x-2)(x-3)$. We also know that the product $f_1f_2f_3f_4f_5 = \operatorname{char}_A(x) = \det(xI - A)$ which has degree 5. Therefore the only possibilities for the other invariant factors are $f_1 = f_2 = f_3 = 1$ and f_3 is one of x - 1, x - 2, x_3 . Let $f_4 = x - a$ were a (which is either 1, 2, or 3) is to be determined. Then the elementary divisors of A will be $(x-1)^2 = x^2 - 2x + 1$, x - 2, x - 3 and x - a so that the rational canonical form is

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & a \end{bmatrix}$$

The trace of this is 0 + 2 + 2 + 3 + a = 7 + a and we are given that the trace is 10. Therefore a = 3 and the rational cononical form of A is

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

- 10. Let V and W be vector spaces over the field **F** and let $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_n \in W$ so the following tow conditions hold
 - (a) $\text{Span}\{v_1, \ldots, v_n\} = V$ (but we do not assume $\{v_1, \ldots, v_n\}$ is linearly independent),
 - (b) For any scalars $c_1, \ldots, c_n \in \mathbf{F}$

(2)
$$\sum_{k=1}^{n} c_k v_k = 0 \quad \text{implies} \quad \sum_{k=1}^{n} c_k w_k = 0.$$

Show that there is a unique linear map $T: V \to W$ so that $Tv_k = w_k$ for $1 \le k \le n$.

Solution: By reordering we can assume that v_1, \ldots, v_k is a basis of V where $k \leq n$. Then for $k+1 \leq j \leq n$ we have that $v_j \in \text{Span}\{v_1, \ldots, v_k\}$. By our basic existence theorem for linear maps we that that there is a unique linear map $T: V \to W$ so that

$$Tv_i = w_i \quad \text{for} \quad 1 \le i \le k$$

(Note that if the required map exists that it must satisfy this condition. This shows that if T exists, then it is unique.) For $k + 1 \leq j \leq n$ we have that $v_j \in \text{Span}\{v_1, \ldots, v_k\}$ there are scalars c_1, \ldots, c_k so that $v_j = c_1v_1 + \cdots + c_kv_k$. Therefore

$$Tv_{j} = T(c_{1}v_{1} + \dots + c_{k}v_{k}) = c_{1}Tv_{1} + \dots + c_{k}Tv_{k} = c_{1}w_{1} + \dots + c_{k}w_{k}.$$

But we also have

(3)

$$v_i - c_1 v_1 - \dots - c_k v_k = 0$$

By the condition (2) this implies $w_j - c_1 w_1 - \cdots - c_k w_k = 0$ so that

(4)
$$w_j = c_1 w_1 + \dots + c_k w_k.$$

Now combining (3) and (4) gives that $Tv_j = w_j$. This shows that $Tv_i = w_i$ for $1 \le i \le n$ and completes the proof.