Mathematics 700 Final

Name:
Show your work to get credit. An answer with no work will not get credit.

1. Define the following:
(a) eigenvalue.

Let $T: V \rightarrow V$ be linear map (where V is a vector space over the field of scalars \mathbf{F}).
Then $\lambda \in \mathbf{F}$ is an eigenvalue iff there is nonzero vector $v \in V$ so that $T v=\lambda v$.
REmARK: It was popular to define an eigenvalue to be a root of the characteristic equation $\operatorname{det}(\lambda I-T)=0$. That such roots are the eigenvalues is the conclusion of a theorem, not the definition.
(b) eigenvector.

Let $T: V \rightarrow V$ be linear map (where V is a vector space over the field of scalars \mathbf{F}). Then $v \in V$ is an eigenvector iff v is nonzero and there is a scalar $\lambda \in \mathbf{F}$ so that $T v=\lambda v$.
(c) coordinates of a vector relative to a basis.

Let V have $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ as an ordered basis. Then any vector $x \in V$ can be uniquely written as $x=x_{1} v_{1}+x_{2} v_{2}+\cdots x_{n} v_{n}$ were $x_{1}, x_{2}, \ldots, x_{n} \in \mathbf{F}$. Then the column vector

$$
[x]_{\mathcal{V}}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

is the coordinate vector of x in the basis \mathcal{V} and the scalars $x_{1}, x_{2}, \ldots, x_{n}$ are the coordinates of x in this basis.
(d) the three elementary row operations.

The elementary row operations over a commutative ring R are:
(i) Multiplying a row by an invertible element of R.
(ii) Interchanging two rows.
(iii) Adding a scalar multiple of one row to another row.
(e) the Smith Normal Form of a matrix over a Euclidean domain.

Let $A \in M_{m \times n}(R)$. Then F is a the Smith normal form of A iff F is equivalent to F by elementary row and column operations and F is diagonal of the form

$$
F=\left[\begin{array}{llllll}
f_{1} & & & & & \\
& f_{2} & & & & \\
& & \ddots & & & \\
& & & f_{r} & & \\
& & & & 0 & \\
& & & & & \ddots
\end{array}\right]
$$

where the elemnts $f_{1}, f_{2}, \ldots, f_{r}$ are nonzero and satisfy $f_{1}\left|f_{2}\right| \cdots\left|f_{r-1}\right| f_{r}$.
(f) V is the direct sum of W_{1}, \ldots, W_{k}.

The vector space V is a direct sum of W_{1}, \ldots, W_{k} iff $W_{1} \cup \cdots \cup W_{k}$ spans V and every elment $v \in V$ can be uniquely expressed as $v=w_{1}+w_{2}+\cdots+w_{k}$ with $w_{i} \in W_{i}$.
2. Let V be a vector space and let $v_{1}, \ldots, v_{n} \in V$ be linearly independent vectors. Let $v \in V$ be a vector so that $v \notin \operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$. Show that $\left\{v_{1}, \ldots, v_{n}, v\right\}$ is a linearly independent set.

Solution: To show that $\left\{v_{1}, \ldots, v_{n}, v\right\}$ is a linearly independent set we need to show that if the linear combination

$$
\begin{equation*}
a_{1} v_{1}+\cdots+a_{n} v_{n}+a v=0 \tag{1}
\end{equation*}
$$

then all of the scalars a_{1}, \ldots, a_{n}, a are zero. First we note that $a=0$, for iff not we can solve $a_{1} v_{1}+\cdots+a_{n} v_{n}+a v=0$ for v to get

$$
v=\frac{-a_{1}}{a} v_{1}+\frac{-a_{2}}{a} v_{n}+\cdots+\frac{-a_{n}}{a} v_{n} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}
$$

contradiction the assumption that $v \notin \operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$. Using $a=0$ in (1) implies

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0
$$

But as $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent this implies that $a_{1}=a_{2}=\cdots a_{n}=0$ as required.
3. Let $M_{k \times k}(\mathbf{R})$ be the vector space of $k \times k$ matrices over the real numbers. $T: M_{3 \times 3}(\mathbf{R}) \rightarrow$ $M_{2 \times 2}(\mathbf{R})$ be linear. Show there is a nonzero symmetric matrix, A, so that $T(A)=0$. (Recall that A is symmetric iff $A^{t}=A$ where A^{t} is the transpose of A.)

Solution: Let $\mathcal{S} \subset M_{3 \times 3}(\mathbf{R})$ be the subspace of $M_{3 \times 3}(\mathbf{R})$ of symmetric matrices. Then $\operatorname{dim} \mathcal{S}=6$ as it as for a basis

$$
\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right\} .
$$

Let $S=\left.T\right|_{\mathcal{S}}$ be the restriction of T to \mathcal{S}. Then $S: \mathcal{S} \rightarrow M_{2 \times 2}(\mathbf{R})$ and $\operatorname{dim} M_{2 \times 2}(\mathbf{R})=4$. Therefore $\operatorname{rank} S+$ nullity $S=6$ implies that nullity $S=\operatorname{dim} \operatorname{ker} S \geq 2$. Therefore $\operatorname{ker} S \neq\{0\}$. So letting A be a nonzero element of $\operatorname{ker} S \subseteq \mathcal{S}$ and using that S is the restriction of T we see that $T(A)=S(A)=0$. Thus A is a nonzero symmetric matrix with $T(A)=0$.
4. What is the Jordan canonical form, over the complex numbers, of a matrix that has elementary divisors $x-1,(x-1)^{2}, x^{2}-6 x+25,\left(x^{2}-6 x+25\right)^{2}$?

Solution: Over the complex numbers we have the factorization $x^{2}-6 x+25=(x-(3+$ $4 i))(x-(3-4 i))$. Therefore the Jordan canonical form will consist of the block diagonal matrix with the Jordan blocks for $(x-1),(x-1)^{2},(x-(3+4 i)),(x-(3+4 i))^{2},(x-(3-4 i))$, and $(x-(3-4 i))^{2}$ along the diagonal. That is the Jordan form is

$$
\left[\begin{array}{cccccccc}
1 & & & & & & & \\
\\
& 1 & & & & & & \\
& 1 & 1 & & & & & \\
& & 3+4 i & & & & & \\
& & & 3+4 i & & & & \\
& & & & 1 & 3+4 i & & \\
& & & & & & 3-4 i & \\
& & & & & & & 3-4 i \\
& & & & & & & 1
\end{array}\right]
$$

where all unspecified elements are zero.
5. Let

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 2 & 1 & -1 \\
3 & 4 & 1 & 1
\end{array}\right]
$$

Then for A find
(a) The invariant factors.

Solution: By definition the invariant factors of A are the invariant factors of $x I-A$ over the Euclidean domain $\mathbf{R}[x]$. As this is block lower triangular we have

$$
\begin{aligned}
\operatorname{det}(x I-A) & =\operatorname{det}\left[\begin{array}{cc}
x & -1 \\
-1 & x
\end{array}\right] \operatorname{det}\left[\begin{array}{cc}
x-1 & 1 \\
-1 & x-1
\end{array}\right] \\
& =\left(x^{2}-1\right)\left((x-1)^{2}+1\right) \\
& =(x-1)(x+1)\left(x^{2}+2 x+2\right) .
\end{aligned}
$$

This has distinct prime factors so the elementary divisors of $x I-A$ are $f_{1}=f_{2}=f_{3}=1$ and $f_{4}=(x-1)(x+1)\left(x^{2}+2 x+2\right)$. (This is because $f_{1}\left|f_{2}\right| f_{3} \mid f_{4}$ and $f_{1} f_{2} f_{3} f_{4}=$ $(x-1)(x+1)\left(x^{2}+2 x+2\right)$. So if $f_{3} \neq 1$, then the then $f_{3}^{2} \mid(x-1)(x+1)\left(x^{2}+2 x+2\right)$ so that the square of some non-constant polynomial would divide $(x-1)(x+1)\left(x^{2}+2 x+2\right)$. As this is not the case we have $f_{3}=1$.)
(b) The elementary divisors.

Solution: The elementary divisors are the prime power factors of the invariant factors.
So in this case they are $q_{1}=x-1, q_{2}=x+1, q_{3}=x^{2}-2 x+2$.
(c) The minimal polynomial.

Solution: The minimal polynomial is just the invariant factor of largest degree. That is $\min _{A}(x)=f_{x}=(x-1)(x+1)\left(x^{2}+2 x+2\right)$.
(d) The rational canonical form over the reals.

Solution: The rational canonical form is the block diagonal matrix with the companion matrices of the elementary divisors along the diagonal. This is

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

6. Let V be a finite dimensional vector space over the real numbers \mathbf{R} and let W be a subspace of V. Assume that there are vectors $v_{1}, v_{2} \in V$ so that

$$
\left.v_{1} \notin W \quad \text { and } \quad v_{2} \notin \operatorname{Span}\left(\left\{v_{1}\right\} \cup W\right\}\right)
$$

There show there is a linear functional $f \in V^{*}$ so that $f(w)=0$ for all $w \in W, f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=2$.

Solution: We know that a given in finite dimensional vector spaces we can separate a vector not in a subspace form a subspace by a linear functional. This means that we can find linear functionals $f_{1}, f_{2} \in V^{*}$ so that

$$
f_{1}\left(v_{1}\right)=1, \quad \text { and } \quad f_{1}(w)=0 \quad \text { for all } \quad w \in W
$$

and

$$
\left.f_{2}\left(v_{2}\right)=1 \quad \text { and } \quad f_{2}(x)=0 \quad \text { for all } \quad x \in \operatorname{Span}\left(\left\{v_{1}\right\} \cup W\right\}\right)
$$

Let f be the linear combination of f_{1} and f_{2} given by

$$
f=f_{1}+\left(2-f_{1}\left(v_{2}\right)\right) f_{2}
$$

(Note that $\left(2-f_{1}\left(v_{2}\right)\right)$ is a scalar so this is a linear combination.) Then if $w \in W$ we have

$$
f(w)=f_{1}(w)+\left(2-f_{1}\left(v_{2}\right)\right) f_{2}(w)=0
$$

as f_{1} and f_{2} are both zero on W. Next

$$
f\left(v_{1}\right)=f_{1}\left(v_{1}\right)+\left(2-f_{1}\left(v_{2}\right)\right) f_{2}\left(v_{1}\right)=1+0=1
$$

as $f_{1}\left(v_{1}\right)=1$ and $f_{2}\left(v_{1}\right)=0$. And to finish

$$
f\left(v_{2}\right)=f_{1}\left(v_{1}\right)+\left(2-f_{1}\left(v_{2}\right)\right) f_{2}\left(v_{2}\right)=f_{1}\left(v_{1}\right)+\left(2-f_{1}\left(v_{2}\right)\right)=2
$$

as $f_{2}\left(v_{2}\right)=1$.
7. Let V be a finite dimensional vector space over the complex numbers and $P: V \rightarrow V$ a linear map so that $P^{2}=P$. Show that trace $P=\operatorname{rank} P$

Solution: We know that if $P^{2}=P$ (that is P is a projection) that $V=$ image $P \oplus \operatorname{ker} P$. (This can be seen directly as for $v \in V$ we have $v=P v+(v-P v)$ and $P(v-P v)=P v-P^{2} v=$ $P v-P v=0$ so that $v-P v \in \operatorname{ker} P$. Therefore image $P+\operatorname{ker} P=V$. But if $v \in$ image $P \cap \operatorname{ker} P$ then we have $v=P x$ for some x. Then $P v=P^{2} x=P x=v$. Therefore, as also $v \in$ image P, $v=P v=0$. Thus image $P \cap \operatorname{ker} P=\{0\}$. But image $P+\operatorname{ker} P=V$ and image $P \cap \operatorname{ker} P=\{0\}$ imply that $V=V=$ image $P \oplus \operatorname{ker} P$. Let $n=\operatorname{dim} V$ and $r=\operatorname{dim}$ image $P=\operatorname{rank} P$ and choose a basis v_{1}, \ldots, v_{r} of image P and then a basis of v_{r+1}, \ldots, v_{n} of ker P. Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V. If $1 \leq i \leq r$ then $v_{i} \in$ image P so that $v_{i}=P x_{i}$ for some $x_{i} \in V$. But then $P v_{i}=P^{2} x_{i}=P x_{i}=v_{i}$. If $r+1 \leq j \leq n$ then $v_{j} \in \operatorname{ker} P$ and so $P v_{j}=0$. Summarizing:

$$
P v_{i}= \begin{cases}v_{i}, & 1 \leq i \leq r \\ 0, & r+1 \leq i \leq n\end{cases}
$$

This implies the matrix of P in the basis $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ is the block matrix

$$
[P]_{\mathcal{V}}=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]
$$

where I_{r} is the $r \times r$ identity matrix. But then trace $P=\operatorname{trace}[P]_{\mathcal{V}}=r=\operatorname{rank} P$.
8. Let $\mathcal{P}_{2}=\operatorname{Span}\left\{1, x, x^{2}\right\}$ be the real polynomials of degree ≤ 2. Define $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ by

$$
T(p)(x)=p(x+1) .
$$

Let \mathcal{P}_{2}^{*} be the dual space to \mathcal{P}_{2} and let $\Lambda \in \mathcal{P}_{2}^{*}$ be the functional

$$
\Lambda(p)=p(-3)
$$

Then compute $\left\langle x^{2}, T^{*} \Lambda\right\rangle$.
Solution: This is just a case through the definitions:

$$
\begin{aligned}
\left\langle x^{2}, T^{*} \Lambda\right\rangle & =\left\langle T x^{2}, \Lambda\right\rangle \\
& =\left\langle(x+1)^{2}, \Lambda\right\rangle \\
& =(-3+1)^{2} \\
& =4 .
\end{aligned}
$$

9. A 5×5 real matrix A has minimal polynomial $\min _{A}(x)=(x-1)^{2}(x-2)(x-3)$ and trace $(A)=$ 10. What is the rational canonical form for A ?

Solution: Let f_{1}, \ldots, f_{5} be the invariant factors of A. Then f_{5} is the minimal polynomial of A and so $f_{5}=(x-1)^{2}(x-2)(x-3)$. We also know that the product $f_{1} f_{2} f_{3} f_{4} f_{5}=\operatorname{char}_{A}(x)=$ $\operatorname{det}(x I-A)$ which has degree 5 . Therefore the only possibilities for the other invariant factors are $f_{1}=f_{2}=f_{3}=1$ and f_{3} is one of $x-1, x-2, x_{3}$. Let $f_{4}=x-a$ were a (which is either 1 , 2 , or 3) is to be determined. Then the elementary divisors of A will be $(x-1)^{2}=x^{2}-2 x+1$, $x-2, x-3$ and $x-a$ so that the rational canonical form is

$$
\left[\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & a
\end{array}\right] .
$$

The trace of this is $0+2+2+3+a=7+a$ and we are given that the trace is 10 . Therefore $a=3$ and the rational cononical form of A is

$$
\left[\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right] .
$$

10. Let V and W be vector spaces over the field \mathbf{F} and let $v_{1}, \ldots, v_{n} \in V$ and $w_{1}, \ldots, w_{n} \in W$ so the following tow conditions hold
(a) $\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}=V$ (but we do not assume $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent),
(b) For any scalars $c_{1}, \ldots, c_{n} \in \mathbf{F}$

$$
\begin{equation*}
\sum_{k=1}^{n} c_{k} v_{k}=0 \quad \text { implies } \quad \sum_{k=1}^{n} c_{k} w_{k}=0 \tag{2}
\end{equation*}
$$

Show that there is a unique linear map $T: V \rightarrow W$ so that $T v_{k}=w_{k}$ for $1 \leq k \leq n$.
Solution: By reordering we can assume that v_{1}, \ldots, v_{k} is a basis of V where $k \leq n$. Then for $k+1 \leq j \leq n$ we have that $v_{j} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}$. By our basic existence theorem for linear maps we that that there is a unique linear map $T: V \rightarrow W$ so that

$$
T v_{i}=w_{i} \quad \text { for } \quad 1 \leq i \leq k
$$

(Note that if the required map exists that it must satisfy this condition. This shows that if T exists, then it is unique.) For $k+1 \leq j \leq n$ we have that $v_{j} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}$ there are scalars c_{1}, \ldots, c_{k} so that $v_{j}=c_{1} v_{1}+\cdots c_{k} v_{k}$. Therefore

$$
T v_{j}=T\left(c_{1} v_{1}+\cdots c_{k} v_{k}\right)=c_{1} T v_{1}+\cdots+c_{k} T v_{k}=c_{1} w_{1}+\cdots+c_{k} w_{k}
$$

But we also have

$$
v_{j}-c_{1} v_{1}-\cdots-c_{k} v_{k}=0
$$

By the condition (2) this implies $w_{j}-c_{1} w_{1}-\cdots-c_{k} w_{k}=0$ so that

$$
\begin{equation*}
w_{j}=c_{1} w_{1}+\cdots+c_{k} w_{k} \tag{4}
\end{equation*}
$$

Now combining (3) and (4) gives that $T v_{j}=w_{j}$. This shows that $T v_{i}=w_{i}$ for $1 \leq i \leq n$ and completes the proof.

