Mathematics 700, Test \#2

Show your work to get credit. An answer with no work will not get credit.

1. Find the Smith normal form over the integers of the matrix

$$
A=\left[\begin{array}{cc}
4 & 6 \\
8 & 10 \\
14 & 12
\end{array}\right]
$$

First solution: We reduce the matrix using elmentary row and column operations.

$$
\begin{array}{rlr}
{\left[\begin{array}{cc}
4 & 6 \\
8 & 10 \\
14 & 12
\end{array}\right]} & \cong\left[\begin{array}{cc}
4 & 2 \\
8 & 2 \\
14 & -2
\end{array}\right] & \left\{\begin{array}{l}
C_{1} \mapsto C_{1} \\
C_{2} \mapsto C_{2}-C_{1}
\end{array}\right. \\
& \cong\left[\begin{array}{cc}
4 & 2 \\
0 & -2 \\
14 & -2
\end{array}\right] & \left\{\begin{array}{l}
R_{1} \mapsto R_{1} \\
R_{2} \mapsto R_{2}-2 R_{1} \\
R_{3} \mapsto R_{3}
\end{array}\right. \\
& \cong\left[\begin{array}{cc}
4 & 0 \\
0 & 2 \\
14 & 0
\end{array}\right] & \left\{\begin{array}{l}
R_{1} \mapsto R_{1}+R_{2} \\
R_{2} \mapsto-R_{2} \\
R_{3} \mapsto R_{3}-R_{2}
\end{array}\right. \\
& \cong\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
2 & 0
\end{array}\right] & \left\{\begin{array}{l}
R_{1} \mapsto R_{1} \\
R_{2} \mapsto R_{2} \\
R_{3} \mapsto R_{3}-3 R_{1}
\end{array}\right. \\
& \cong\left[\begin{array}{ll}
0 & 0 \\
0 & 2 \\
2 & 0
\end{array}\right] & \left\{\begin{array}{l}
R_{1} \mapsto R_{1}-2 R_{3} \\
R_{2} \mapsto R_{2} \\
R_{3} \mapsto R_{3}
\end{array}\right. \\
& \cong\left[\begin{array}{ll}
2 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right] \quad & \left\{\begin{array}{l}
R_{1} \mapsto R_{3} \\
R_{2} \mapsto R_{2} \\
R_{3} \mapsto R_{1}
\end{array}\right.
\end{array}
$$

and this is the Smith normal form.

Second Solution: We know that if C is an $m \times n$ matrix with elements in a Euclidean domain and f_{1}, \ldots, f_{r} are the elementary divisors of C, then the product $f_{1} \cdots f_{k}$ is the greatest common divisor of the $k \times k$ sub-determinants of C. In the case at hand if f_{1} and f_{2} are the elementary divisors of A then

$$
f_{1}=\operatorname{gcd}\{4,6,8,10,14,12\}=2
$$

and

$$
\begin{aligned}
f_{1} f_{2} & =\operatorname{gcd}\left\{\operatorname{det}\left[\begin{array}{cc}
4 & 6 \\
8 & 10
\end{array}\right], \operatorname{det}\left[\begin{array}{cc}
4 & 6 \\
14 & 12
\end{array}\right], \operatorname{det}\left[\begin{array}{cc}
8 & 10 \\
14 & 12
\end{array}\right]\right\} \\
& =\operatorname{gcd}\{-8,-36,-44\}=4
\end{aligned}
$$

which implies that $f_{2}=2$. Therefore the Smith normal form is

$$
\left[\begin{array}{cc}
f_{1} & 0 \\
0 & f_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right] .
$$

2. Find the invariant factors of the following matrices.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \quad(\text { with } b \neq 0) .
$$

Solution: Recall that the invarant factors of a square matrix M over a field \mathbf{F} are, by definition, the invariant factors of matrix $x I-M$ over the Euclidean domain $\mathbf{F}[x]$.

For $x I-A=\left[\begin{array}{cc}x-1 & 0 \\ 0 & x-1\end{array}\right]$ the gcd of the 1×1 sub-determinants is $x-1$ and the gcd of the 2×2 subdeterminants is $(x-1)^{2}$. Thus the elmentary divsors satisfy $f_{1}=x-1$ and $f_{1} f_{2}=(x-1)^{2}$. Therefore $f_{1}=f_{2}=(x-1)$ are the elmentary divsors of A.

For $x I-B=\left[\begin{array}{cc}x-1 & -1 \\ 0 & x-1\end{array}\right]$ one of the elmentents, -1 , is a unit in $\mathbf{F}[x]$ so the gcd of the 1×1 sub-determinants is $f_{1}=1$. Thus $f_{2}=f_{1} f_{2}=\operatorname{det}(x I-B)=(x-1)^{2}$. So the $f_{1}=1$ and $f_{2}=(x-1)^{2}$ are the elmentary divsors.
For $x I-C=\left[\begin{array}{cc}x-a & -b \\ -c & x-d\end{array}\right]$ the elment $-b \neq 0$ is a unit in $\mathbf{F}[x]$ and so the gcd of the 1×1 sub-subdeterminats is $f_{1}=1$. Therefore $f_{2}=f_{1} f_{2}=\operatorname{det}(x I-C)=$ $x^{2}-(a+d) x+(a d-b c)$.
3. Let $\mathcal{P}_{1}=\operatorname{Span}\{1, x\}$ be the real polynomials of degree ≤ 1 with real coefficients and define two linear functionals $\Lambda_{1}, \Lambda_{2}: \mathcal{P}_{1} \rightarrow \mathbf{R}$ by

$$
\Lambda_{1}(p):=\int_{0}^{1} p(x) d x, \quad \Lambda_{2}(p)=\int_{0}^{1} x p(x) d x
$$

Find the basis of \mathcal{P}_{1} that is dual to $\left\{\Lambda_{1}, \Lambda_{2}\right\}$.
Solution: Let $p_{1}(x)=a+b x$ and $p_{2}(x)=c+d x$ be the basis dual to Λ_{1} and Λ_{2}. Then by definition of dual basis

$$
\begin{aligned}
& 1=\Lambda_{1}\left(p_{1}\right)=\int_{0}^{1}(a+b x) d x=a+\frac{b}{2} \\
& 0=\Lambda_{2}\left(p_{1}\right)=\int_{0}^{1} x(a+b x) d x=\frac{a}{2}+\frac{b}{3}
\end{aligned}
$$

Solving for a and b gives $a=4$ and $b=-6$ so that $p_{1}(x)=4-6 x$. Likewise we have

$$
\begin{aligned}
& 0=\Lambda_{1}\left(p_{2}\right)=\int_{0}^{1}(c+d x) d x=c+\frac{d}{2} \\
& 1=\Lambda_{2}\left(p_{2}\right)=\int_{0}^{1} x(c+d x) d x=\frac{c}{2}+\frac{d}{3} .
\end{aligned}
$$

Solving for c and d gives $c=-6$ and $d=12$ so that $p_{2}(x)=-6+12 x$. Therefore the basis dual to $\left\{\Lambda_{1}, \Lambda_{2}\right\}$ is $\{4-6 x,-6+12 x\}$.
4. Let A be an $n \times n$ matrix with real entries so that $A^{t}=A^{-1}$. Then show that $\operatorname{det}(A)=$ ± 1.

Solution: From $I=A A^{-1}$ we have $1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$ so that $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$. Also $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$. Thus

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)=\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)},
$$

which yields $\operatorname{det}(A)^{2}=1$ and therefore $\operatorname{det}(A)= \pm 1$.
5. If $T: V \rightarrow V$ is a linear operator on the vector space V that satisfies $T^{2}=I$, then show that the only eigenvalues of T are 1 and -1 .

Solution: Let λ be an eigenvalue and let $v \neq 0$ be an eigenvector for T. Then $T v=\lambda v$. Therefore we have

$$
T^{2} v=I v=v
$$

and

$$
T^{2} v=T T v=T \lambda v=\lambda T v=\lambda^{2} v
$$

Comparing these formulas for $T^{2} v$ gives $\lambda^{2} v=v$ and therefore $\lambda^{2}=1$ so that $\lambda= \pm 1$.

Remark: Let $p(x)$ be a polynomial and $T: V \rightarrow V$ a linear map such that $p(T)=0$. Then any eigenvalue of T is a root of $p(x)=0$. To see this let λ be an eigenvalue of T. Then there is a nonzero vector v so that $T v=\lambda v$. We have shown in a homework problem that for any polynomial $q(x)$ that $q(T) v=q(\lambda) v$. Therefore using the polynomial $p(x)$ we have

$$
p(\lambda) v=p(T) v=0
$$

as $p(T)=0$. But $v \neq 0$ so this gives $p(\lambda)=0$. The problem here was just the special case $p(x)=x^{2}-1$.
6. Let D be an invertible $n \times n$ matrix and N a $n \times n$ matrix so that $D N=N D$ and $N^{3}=0$. Show that $D+N$ is invertible.

Solution: There are several natural ways to do this problem. Here is one closely related to ideas we have either done in class or on homework. Recall that if M is a matrix with $M^{3}=0$ then $I+M$ is invertible with $(I+M)^{-1}=I-M+M^{2}$. As on one of the homework assignments, this can be seen directly my noting that if $B=I-M+M^{2}$ then
$B(I+M)=\left(I-M+M^{2}\right)(I+M)=I, \quad(I+M) B=(I+M)\left(I-M+M^{2}\right)=I$.
Now write

$$
D+N=D\left(I+D^{-1} N\right)
$$

Then $D N=N D$ implies $N D^{-1}=D^{-1} N$ so that if $M=D^{-1} N$ can use $N^{3}=0$ to get

$$
M^{3}=D^{-1} N D^{-1} N D^{-1} N=\left(D^{-1}\right)^{3} N^{3}=0
$$

Therefore $I+M=I+D^{-1} N$ is invertible. Thus $D+N=D\left(I+D^{-1} N\right)$ is a product of invertible matrices and therefore is itself invertible and we are done.

We can go farther and compute the inverse of $D+N$ as follows.

$$
\begin{aligned}
(D+N)^{-1} & =\left(D\left(I+D^{-1} N\right)\right)^{-1}=\left(I+D^{-1} N\right)^{-1} D^{-1} \\
& =\left(I-D^{-1} N+\left(D^{-1} N\right)^{2}\right) D^{-1}=D^{-1}-D^{-2} N+D^{-3} N^{2}
\end{aligned}
$$

7. Let A be a real 2×2 matrix so that $A^{2}-3 A+2 I_{2}=0$. Show that A is similar to one of the following three matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

Solution: Note that $A^{2}-3 A+2 I=0$ can be factored into

$$
(A-I)(A-2 I)=0
$$

We will use that fact that for any square matrix B over a field that $B-\lambda I$ is invertible if and only if λ is not an eigenvalue of B.

Case 1: The number 1 is not an eigenvalue of A. Then $A-I$ is invertible and so we can multiply both sides of $(A-I)(A-2 I)=0$ by $(A-I)^{-1}$ and conclude that $A-2 I=0$. That is $A=2 I=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$.

Case 2: The number 2 is not an eigenvalue of A. Then $A-2 I$ is invertible and so we can multiply both sides of $(A-I)(A-2 I)=0$ by $(A-2 I)^{-1}$ and conclude that $A-I=0$. That is $A=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Case 3: Both the numbers 1 and 2 are eigenvalues of A. Let $v_{1}, v_{2} \in \mathbf{R}$ be the corresponding eigenvectors. That is $A v_{1}=1 v_{1}$ and $A v_{2}=2 v_{2}$. Then v_{1} and v_{2} are eigenvectors for distinct eigenvalues of A and therefore linearly independent. As \mathbf{R}^{2} is two dimensional this implies that v_{1}, v_{2} is a basis of \mathbf{R}^{2}. But then if P is the matrix with columns v_{1} and v_{1} (that is $P=\left[v_{1}, v_{2}\right]$) then $P^{-1} A P=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Therefore A is similar to $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

So we have shown more than was required. Either $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, or $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or A is similar to $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
8. Let A be an $n \times n$ matrix over the reals with $\operatorname{det}(A) \neq 0$. Show that

$$
\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-1}
$$

Hint: Recall that $A \operatorname{adj}(A)=\operatorname{det}(A) I$.
Solution: Recall that if c is a scalar and B is an $n \times n$ matrix then $\operatorname{det}(c B)=c^{n} \operatorname{det}(B)$. As $\operatorname{det}(A)$ is a scalar this implies that $\operatorname{det}(\operatorname{det}(A) I)=\operatorname{det}(A)^{n} \operatorname{det}(I)=\operatorname{det}(A)^{n}$. Using this in $A \operatorname{adj}(A)=\operatorname{det}(A) I$ gives

$$
\operatorname{det}(A) \operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A \operatorname{adj}(A))=\operatorname{det}(\operatorname{det}(A) I)=\operatorname{det}(A)^{n}
$$

As $\operatorname{det}(A) \neq 0$ we can cancel a $\operatorname{det}(A)$ off of each side of this and get $\operatorname{det}(\operatorname{adj}(A))=$ $\operatorname{det}(A)^{n-1}$.

