
Mathematics 700, Test #2

Show your work to get credit. An answer with no work will not get credit.

1. Find the Smith normal form over the integers of the matrix

A =

2
4 4 6

8 10
14 12

3
5 :

First solution: We reduce the matrix using elmentary row and column operations.

2
4 4 6
8 10

14 12

3
5 �=

2
4 4 2
8 2

14 �2

3
5

�
C1 7! C1

C2 7! C2 � C1

�=

2
4 4 2
0 �2

14 �2

3
5

8<
:

R1 7! R1

R2 7! R2 � 2R1

R3 7! R3

�=

2
4 4 0

0 2
14 0

3
5

8<
:

R1 7! R1 +R2

R2 7! �R2

R3 7! R3 �R2

�=

2
44 0

0 2
2 0

3
5

8<
:

R1 7! R1

R2 7! R2

R3 7! R3 � 3R1

�=

2
40 0

0 2
2 0

3
5

8<
:

R1 7! R1 � 2R3

R2 7! R2

R3 7! R3

�=

2
42 0

0 2
0 0

3
5

8<
:

R1 7! R3

R2 7! R2

R3 7! R1

and this is the Smith normal form.

Second Solution: We know that if C is an m�n matrix with elements in a Euclidean
domain and f1; : : : ; fr are the elementary divisors of C, then the product f1 � � � fk is the

greatest common divisor of the k � k sub-determinants of C. In the case at hand if f1
and f2 are the elementary divisors of A then

f1 = gcdf4; 6; 8; 10; 14; 12g = 2

and

f1f2 = gcd

�
det

�
4 6

8 10

�
; det

�
4 6

14 12

�
; det

�
8 10

14 12

��

= gcdf�8;�36;�44g = 4



which implies that f2 = 2. Therefore the Smith normal form is2
4f1 0

0 f2
0 0

3
5 =

2
42 0

0 2
0 0

3
5 :

2. Find the invariant factors of the following matrices.

A =

�
1 0
0 1

�
; B =

�
1 1
0 1

�
; C =

�
a b
c d

�
(with b 6= 0):

Solution: Recall that the invarant factors of a square matrix M over a �eld F are, by

de�nition, the invariant factors of matrix xI �M over the Euclidean domain F[x].

For xI � A =

�
x� 1 0
0 x� 1

�
the gcd of the 1 � 1 sub-determinants is x � 1 and

the gcd of the 2 � 2 subdeterminants is (x � 1)2. Thus the elmentary divsors satisfy
f1 = x� 1 and f1f2 = (x� 1)2. Therefore f1 = f2 = (x� 1) are the elmentary divsors

of A.

For xI �B =

�
x� 1 �1
0 x� 1

�
one of the elmentents, �1, is a unit in F[x] so the gcd

of the 1� 1 sub-determinants is f1 = 1. Thus f2 = f1f2 = det(xI � B) = (x� 1)2. So

the f1 = 1 and f2 = (x� 1)2 are the elmentary divsors.

For xI � C =

�
x� a �b

�c x� d

�
the elment �b 6= 0 is a unit in F[x] and so the gcd

of the 1 � 1 sub-subdeterminats is f1 = 1. Therefore f2 = f1f2 = det(xI � C) =

x2 � (a+ d)x+ (ad� bc).
3. Let P1 = Spanf1; xg be the real polynomials of degree � 1 with real coeÆcients and

de�ne two linear functionals �1;�2 : P1 ! R by

�1(p) :=

Z
1

0

p(x) dx; �2(p) =

Z
1

0

xp(x) dx:

Find the basis of P1 that is dual to f�1;�2g.

Solution: Let p1(x) = a+ bx and p2(x) = c+dx be the basis dual to �1 and �2. Then

by de�nition of dual basis

1 = �1(p1) =

Z
1

0

(a+ bx) dx = a+
b

2
;

0 = �2(p1) =

Z
1

0

x(a+ bx) dx =
a

2
+
b

3
:

Solving for a and b gives a = 4 and b = �6 so that p1(x) = 4� 6x. Likewise we have

0 = �1(p2) =

Z
1

0

(c+ dx) dx = c+
d

2
;

1 = �2(p2) =

Z
1

0

x(c+ dx) dx =
c

2
+
d

3
:

Solving for c and d gives c = �6 and d = 12 so that p2(x) = �6 + 12x. Therefore the
basis dual to f�1;�2g is f4� 6x;�6 + 12xg.



4. Let A be an n�n matrix with real entries so that At = A�1. Then show that det(A) =

�1.

Solution: From I = AA�1 we have 1 = det(I) = det(AA�1) = det(A) det(A�1) so

that det(A�1) = 1= det(A). Also det(At) = det(A). Thus

det(A) = det(At) = det(A�1) =
1

det(A)
;

which yields det(A)2 = 1 and therefore det(A) = �1.
5. If T : V ! V is a linear operator on the vector space V that satis�es T 2 = I, then show

that the only eigenvalues of T are 1 and �1.

Solution: Let � be an eigenvalue and let v 6= 0 be an eigenvector for T . Then Tv = �v.
Therefore we have

T 2v = Iv = v

and

T 2v = TTv = T�v = �Tv = �2v:

Comparing these formulas for T 2v gives �2v = v and therefore �2 = 1 so that � = �1.

Remark: Let p(x) be a polynomial and T : V ! V a linear map such that p(T ) = 0.
Then any eigenvalue of T is a root of p(x) = 0. To see this let � be an eigenvalue of T .

Then there is a nonzero vector v so that Tv = �v. We have shown in a homework prob-
lem that for any polynomial q(x) that q(T )v = q(�)v. Therefore using the polynomial
p(x) we have

p(�)v = p(T )v = 0

as p(T ) = 0. But v 6= 0 so this gives p(�) = 0. The problem here was just the special

case p(x) = x2 � 1.
6. Let D be an invertible n � n matrix and N a n � n matrix so that DN = ND and

N3 = 0. Show that D +N is invertible.

Solution: There are several natural ways to do this problem. Here is one closely related
to ideas we have either done in class or on homework. Recall that ifM is a matrix with

M3 = 0 then I +M is invertible with (I +M)�1 = I �M +M2. As on one of the
homework assignments, this can be seen directly my noting that if B = I �M +M2

then

B(I +M) = (I �M +M2)(I +M) = I; (I +M)B = (I +M)(I �M +M2) = I:

Now write

D +N = D(I +D�1N):

Then DN = ND implies ND�1 = D�1N so that if M = D�1N can use N3 = 0 to get

M3 = D�1ND�1ND�1N = (D�1)3N3 = 0

Therefore I +M = I +D�1N is invertible. Thus D +N = D(I +D�1N) is a product

of invertible matrices and therefore is itself invertible and we are done.
We can go farther and compute the inverse of D +N as follows.

(D +N)�1 = (D(I +D�1N))�1 = (I +D�1N)�1D�1

= (I �D�1N + (D�1N)2)D�1 = D�1 �D�2N +D�3N2:



7. Let A be a real 2� 2 matrix so that A2 � 3A+ 2I2 = 0. Show that A is similar to one

of the following three matrices�
1 0
0 1

�
;

�
2 0
0 2

�
;

�
1 0
0 2

�
:

Solution: Note that A2 � 3A+ 2I = 0 can be factored into

(A� I)(A� 2I) = 0

We will use that fact that for any square matrix B over a �eld that B��I is invertible
if and only if � is not an eigenvalue of B.

Case 1: The number 1 is not an eigenvalue of A. Then A � I is invertible and so
we can multiply both sides of (A � I)(A � 2I) = 0 by (A � I)�1 and conclude that

A� 2I = 0. That is A = 2I =

�
2 0

0 2

�
.

Case 2: The number 2 is not an eigenvalue of A. Then A � 2I is invertible and so
we can multiply both sides of (A � I)(A � 2I) = 0 by (A � 2I)�1 and conclude that

A� I = 0. That is A = I =

�
1 0

0 1

�
.

Case 3: Both the numbers 1 and 2 are eigenvalues of A. Let v1; v2 2 R be the

corresponding eigenvectors. That is Av1 = 1v1 and Av2 = 2v2. Then v1 and v2 are
eigenvectors for distinct eigenvalues of A and therefore linearly independent. As R2 is
two dimensional this implies that v1, v2 is a basis of R2. But then if P is the matrix

with columns v1 and v1 (that is P = [v1; v2]) then P�1AP =

�
1 0

0 2

�
. Therefore A is

similar to

�
1 0
0 2

�
.

So we have shown more than was required. Either A =

�
2 0
0 2

�
, or A =

�
1 0
0 1

�
or A

is similar to

�
1 0
0 2

�
.

8. Let A be an n� n matrix over the reals with det(A) 6= 0. Show that

det(adj(A)) = det(A)n�1:

Hint: Recall that A adj(A) = det(A)I.

Solution: Recall that if c is a scalar and B is an n�nmatrix then det(cB) = cn det(B).

As det(A) is a scalar this implies that det(det(A)I) = det(A)n det(I) = det(A)n. Using
this in A adj(A) = det(A)I gives

det(A) det(adj(A)) = det(A adj(A)) = det(det(A)I) = det(A)n:

As det(A) 6= 0 we can cancel a det(A) o� of each side of this and get det(adj(A)) =
det(A)n�1.


