Mathematics 700 Test \#1
Name: \quad Solution Key
Show your work to get credit. An answer with no work will not get credit.

1. (15 Points) Define the following:
(a) Linear independence.

The vectors v_{1}, \ldots, v_{m} in the vector space V are linearly independent iff the only scalars $c_{1}, \ldots, c_{m} \in \mathbb{F}$ with $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}=0$ are $c_{1}=c_{2}=\cdots=c_{m}=0$.
(b) The span of a subset S of a vector space V.

The span of S is the set of all linear combinations formed form elements of S.
(c) The vector space V is direct sum of its subspaces U and W.

The V is direct sum of its subspaces U and W (written $V=U \oplus W$) iff $V=U+W$ and $U \cap W=\{0\}$.
2. (10 Points) Find (no proof required) a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ so that

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

First solution: We first write the vector $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$ as a linear combination of the basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=(x-y)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Now use that we know the values of T on the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$:

$$
\begin{aligned}
T\left[\begin{array}{l}
x \\
y
\end{array}\right] & =T\left((x-y)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=(x-y) T\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y T\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =(x-y)\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+y\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x-2 y \\
2 x-3 y
\end{array}\right] .
\end{aligned}
$$

Second Solution: We look for T as being given by a matrix:

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Then the conditions on T yeild

$$
\begin{aligned}
& T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c \\
e
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
a+b \\
c+d \\
e+f
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

This leads to the equations $a=1, c=2, e=3, a+b=1, c+d=0$, and $e+f=0$. This gives the values of a, c, and e. Then it is easy to see that $b=0, d=-2$, and $f=-3$. Therefore

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
2 & -2 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x-2 y \\
2 x-3 y
\end{array}\right]
$$

3. (10 Points) Let v_{1}, v_{2}, v_{3} be linearly independent vectors in a vector space V. Then show that the vectors $v_{1}, 2 v_{1}+v_{2}, 3 v_{1}+2 v_{2}+v_{3}$ are also linearly independent.
Solution: Let $c_{1}, c_{2}, c_{3} \in \mathbb{F}$ be scalars so that

$$
c_{1} v_{1}+c_{2}\left(2 v_{1}+v_{2}\right)+c_{3}\left(3 v_{1}+2 v_{2}+v_{3}\right)=0 .
$$

To finish we need to show that $c_{1}=c_{2}=c_{3}=0$. Regrouping gives

$$
\begin{equation*}
\left(c_{1}+2 c_{2}+3 c_{3}\right) v_{1}+\left(c_{2}+2 c_{3}\right) v_{2}+c_{3} v_{3}=0 \tag{1}
\end{equation*}
$$

Because v_{1}, v_{2}, v_{3} are linearly independent (and if you did not say very explicitly say this, you lost most of the points on the problem) the coefficients of v_{1}, v_{2}, v_{3} vanish in (1) and therefore

$$
\begin{aligned}
c_{1}+2 c_{2}+3 c_{3} & =0 \\
c_{2}+2 c_{3} & =0 \\
c_{3} & =0 .
\end{aligned}
$$

Back solving in this gives $c_{1}=c_{2}=c_{3}=0$, which completes the proof.
4. (10 Points) Let $M_{2 \times 2}$ be the 2 by 2 matrices over the field \mathbb{F} and let

$$
\mathcal{D}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]: a, b \in \mathbb{F}\right\}
$$

be the subspace of diagonal matrices. Show that any three dimensional subspace of $M_{2 \times 2}$ contains a nonzero diagonal matrix.
Solution: First note that $\operatorname{dim} \mathcal{D}=2$ (which is clear as $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis of \mathcal{D}). Let \mathcal{V} be a three dimensional subspace of $M_{2 \times 2}$. Then

$$
\operatorname{dim}(\mathcal{V} \cap \mathcal{D})=\operatorname{dim}(\mathcal{D})+\operatorname{dim}(\mathcal{V})-\operatorname{dim}(\mathcal{V}+\mathcal{D})=5-\operatorname{dim}(\mathcal{V}+\mathcal{D}) \geq 1
$$

as $\mathcal{V}+\mathcal{D} \subset M_{2 \times 2}$ so that $\operatorname{dim}(\mathcal{V}+\mathcal{D}) \leq \operatorname{dim}\left(M_{2 \times 2}\right)=4$. But $\operatorname{dim}(\mathcal{V} \cap \mathcal{D}) \geq 1$ implies that $\mathcal{V} \cap \mathcal{D}$ contains a nonzero element, which is the desired nonzero diagonal matrix in \mathcal{V}.
5. (10 Points) Find (no proof required) a basis for the set of the space of vectors $(x, y, z, w) \in \mathbb{R}^{4}$ that satisfy

$$
\begin{aligned}
& x+y+z+w=0 \\
& x+y+2 z+3 w=0 .
\end{aligned}
$$

Solution: Row reducing the matrix of coefficients of the system leads to

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

which implies the system is equivalent to

$$
\begin{aligned}
& x=-y+w \\
& z=-2 w .
\end{aligned}
$$

Therefore the subspace in question is

$$
\{(-y+w, y,-2 w, w): y, w \in \mathbb{R}\}=\{y(-1,1,0,0)+w(1,0,-2,1): y, w \in \mathbb{R}\}
$$

so that $\{(-1,1,0,0),(1,0,-2,1)\}$ is the required basis.
6. (15 Points) Show that if v_{1}, \ldots, v_{k} are vectors in the vector space V and $c_{1}, \ldots, c_{k} \in \mathbb{F}$ are scalars so that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0, \quad \text { and } \quad c_{k} \neq 0
$$

then

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}=\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\} .
$$

Solution: The inclusion $\operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\} \subseteq \operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}$ is clear and so we are done if we can show $\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}$. From the relation $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=$ 0 and using $c_{k} \neq 0$ we can solve for v_{k} to get

$$
v_{k}=-\frac{c_{1}}{c_{k}} v_{1}-\frac{c_{2}}{c_{k}} v_{2}-\cdots-\frac{c_{k-1}}{c_{k}} v_{k-1} .
$$

This shows v_{k} is a linear combination of $\left\{v_{1}, \ldots, v_{k-1}\right\}$. Therefore, by the definition of the span of a set of vectors, $v_{k} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}$. As $\left\{v_{1}, \ldots, v_{k-1}\right\} \subseteq \operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}$ we therefore have $\left\{v_{1}, \ldots, v_{k-1}, v_{k}\right\} \subseteq \operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}$. Thus

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}, v_{k}\right\} \subseteq \operatorname{Span} \operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}=\operatorname{Span}\left\{v_{1}, \ldots, v_{k-1}\right\}
$$

and we are done.
7. (15 Points) Let U and V be subspaces of a vector space so that

$$
\operatorname{dim} U=3, \quad \operatorname{dim} W=4, \quad \operatorname{dim}(U \cap W)=2 .
$$

Then show directly, that is without using the theorem that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-$ $\operatorname{dim} U \cap W$, that $\operatorname{dim}(U+W)=5$. (So you are being ask to prove $\operatorname{dim}(U+W)=\operatorname{dim} U+$ $\operatorname{dim} W-\operatorname{dim}(U \cap W)$ in this special case.)
Solution: Let v_{1}, v_{2} be a basis for $U \cap W$. This can be extended to a basis v_{1}, v_{2}, u_{3} of U and to a basis $v_{1}, v_{2}, w_{3}, w_{4}$ of W. We now claim that $\mathcal{B}=\left\{v_{1}, v_{2}, u_{3}, w_{3}, w_{4}\right\}$ is a basis of $U+W$. As \mathcal{B} has 5 elements this will show that $\operatorname{dim}(U+W)=5$. To show that \mathcal{B} is a basis of $U+W$ we to show two things. First that $\operatorname{Span} \mathcal{B}=U+W$ and second that \mathcal{B} is linearly independent.

To see that $\operatorname{Span} \mathcal{B}=U+W$ first note that $\left\{v_{1}, v_{2}, u_{3}\right\} \subset U$ and $\left\{w_{3}, w_{4}\right\} \subset W$ so that $\mathcal{B}=\left\{v_{1}, v_{2}, u_{3}, w_{3}, w_{4}\right\} \subset U \cup W$. Therefore

$$
\operatorname{Span}(\mathcal{B}) \subseteq \operatorname{Span}(U \cup W)=U+W
$$

To get set containment in the other direction let $x \in U+W$. Then $x=u+w$ where $u \in U$ and $w \in W$. As $\left\{v_{1}, v_{2}, u_{3}\right\}$ is a basis for U there are scalars $a_{1}, a_{2}, a_{3} \in \mathbb{F}$ so that $u=a_{1} v_{1}+a_{2} v_{2}+a_{3} u_{3}$. Likewise $\left\{v_{1}, v_{2}, w_{3}, w_{4}\right\}$ is a basis of W so that there are scalars $b_{2}, b_{2}, b_{3}, b_{4} \in \mathbb{F}$ so that $w=b_{1} v_{1}+b_{2} v_{2}+b_{3} w_{3}+b_{4} w_{4}$. Adding these expressions for u and w and doing a bit of regrouping gives

$$
x=u+w=\left(a_{1}+b_{1}\right) v_{1}+\left(a_{2}+b_{2}\right) v_{2}+a_{3} u_{3}+b_{3} w_{3}+b_{4} w_{4}
$$

so that $x \in \operatorname{Span} \in \operatorname{Span}\left\{v_{1}, v_{2}, u_{3}, w_{3}, w_{4}\right\}=\operatorname{Span} \mathcal{B}$. As x was an arbitrary element of $U+W$ this shows $U+W \subseteq \operatorname{Span} \mathcal{B}$ and completes the proof that $\operatorname{Span} \mathcal{B}=U+W$.

To see that \mathcal{B} is linearly independent assume that there are scalars c_{1}, \ldots, c_{5} so that

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} u_{3}+c_{4} w_{3}+c_{5} w_{4}=0 .
$$

We need to show that $c_{1}=c_{2}=\cdots=c_{5}=0$. Toward this end rewrite the last equation as

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} u_{3}=-c_{4} w_{3}-c_{5} w_{4} .
$$

Then setting $y=c_{1} v_{1}+c_{2} v_{2}+c_{3} u_{3}=-c_{4} w_{3}-c_{5} w_{4}$ we see from $y=c_{1} v_{1}+c_{2} v_{2}+c_{3} u_{3}$ that $y \in U$ and from $y=-c_{4} w_{3}-c_{5} w_{4}$ that $y \in W$. Therefore $y \in U \cap W$. Thus y can be expressed
as a linear combination of the basis elements v_{1}, v_{2} of $U \cap W$. That is $y=d_{1} v_{1}+d_{2} v_{2}$. Equating two of our expressions for y gives $d_{1} v_{1}+d_{2} v_{2}=-c_{4} w_{3}-c_{5} w_{4}$ which can be rewritten as

$$
d_{1} v_{1}+d_{2} v_{2}+c_{4} w_{3}+c_{5} w_{4}
$$

and as $\left\{v_{1}, v_{2}, w_{3}, w_{4}\right\}$ is a basis of W, and thus linearly independent, this implies $d_{1}=d_{2}=$ $c_{4}=c_{5}=0$. Using $c_{4}=c_{5}=0$ in (2) gives

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} u_{3}=0 .
$$

As $\left\{v_{1}, v_{2}, u_{3}\right\}$ is a basis for U this implies $c_{1}=c_{2}=c_{3}=0$. Thus we now have $c_{1}=c_{2}=c_{3}=$ $c_{4}=c_{5}=0$ which completes both the proof that \mathcal{B} is linearly independent and the proof of the proposition.
8. (15 Points) Let $\mathcal{U}=\left\{u_{1}, u_{2}\right\}$ and $\mathcal{W}=\left\{w_{1}, w_{2}, w_{3}\right\}$ be two linearly independent sets in a vector space W such that $\mathcal{U} \cup \mathcal{W}$ is linearly independent. Then show

$$
\operatorname{Span}(\mathcal{U}) \cap \operatorname{Span}(\mathcal{W})=\{0\}
$$

Solution 1: It is clear that $\{0\} \subseteq \operatorname{Span}(\mathcal{U}) \cap \operatorname{Span}(\mathcal{W})$. Let $x \in \operatorname{Span}(\mathcal{U}) \cap \operatorname{Span}(\mathcal{V})$ then $x \in \operatorname{Span}(\mathcal{U})$ implies that $x=a_{1} u_{1}+a_{2} u_{2}$ for some scalars $a_{1}, a_{2} \in \mathbb{F}$. Likewise $x \in \operatorname{Span}(\mathcal{V})$ implies $x=b_{1} w_{1}+b_{2} w_{2}+b_{3} w_{3}$ for scalars $b_{1}, b_{2}, b_{3} \in \mathbb{F}$. Setting these expressions equal to each other gives $x=a_{1} u_{1}+a_{2} u_{2}=b_{1} w_{1}+b_{2} w_{2}+b_{3} w_{3}$ which can be rewritten as

$$
a_{1} u_{1}+a_{2} u_{2}-b_{1} w_{1}-b_{2} w_{2}-b_{3} w_{3}=0
$$

As $\mathcal{U} \cup \mathcal{W}=\left\{u_{1}, u_{2}, w_{1}, w_{2}, w_{3}\right\}$ is linearly independent this implies $a_{1}=a_{2}=b_{1}-b_{2}=b_{3}=0$. So $x=a_{1} u_{1}+a_{2} u_{2}=0$. As x was an arbitrary element of $\operatorname{Span}(\mathcal{U}) \cap \operatorname{Span}(\mathcal{W})$ this completes the proof that $\operatorname{Span}(\mathcal{U}) \cap \operatorname{Span}(\mathcal{W})=\{0\}$.
Remark: There are more hypothesis than needed in this problem. We only used that $\mathcal{U} \cup \mathcal{W}$ is linearly independent. (However if $\mathcal{U} \cup \mathcal{W}$ is linearly independent then its subsets \mathcal{U} and \mathcal{W} will each be linearly independent so it is not surprising that assuming that \mathcal{U} and \mathcal{W} are linearly independent is redundant.)
Solution 2: Note that $\mathcal{U} \cup \mathcal{W}=\left\{u_{1}, u_{2}, w_{1}, w_{2}, w_{3}\right\}$ will be a basis for $\operatorname{Span} \mathcal{U}+\operatorname{Span} \mathcal{W}$ and therefore $\operatorname{dim}(\operatorname{Span} \mathcal{U}+\operatorname{Span} \mathcal{W})=5$. Whence

$$
\begin{aligned}
\operatorname{dim}(\operatorname{Span} \mathcal{U} \cap \operatorname{Span} \mathcal{W}) & =\operatorname{dim} \operatorname{Span} \mathcal{U}+\operatorname{dim} \operatorname{Span} \mathcal{W}-\operatorname{dim}(\operatorname{Span} \mathcal{U}+\operatorname{Span} \mathcal{W}) \\
& =2+3-5=0
\end{aligned}
$$

As $\{0\}$ is the only zero dimensional subspace this implies Span $\mathcal{U} \cap \operatorname{Span} \mathcal{W}=\{0\}$.

