
Mathematics 700 Test #1 Name: Solution Key
Show your work to get credit. An answer with no work will not get credit.

1. (15 Points) Define the following:
(a) Linear independence.

The vectors v1, . . . , vm in the vector space V are linearly independent iff the only scalars
c1, . . . , cm ∈ F with c1v1 + c2v2 + · · ·+ cmvm = 0 are c1 = c2 = · · · = cm = 0.

(b) The span of a subset S of a vector space V .
The span of S is the set of all linear combinations formed form elements of S.

(c) The vector space V is direct sum of its subspaces U and W .
The V is direct sum of its subspaces U and W (written V = U ⊕W ) iff V = U +W and
U ∩W = {0}.

2. (10 Points) Find (no proof required) a linear transformation T : R2 → R3 so that

T

[
1
0

]
=

1
2
3

 , T

[
1
1

]
=

1
0
0

 .
First solution: We first write the vector

[
x
y

]
∈ R2 as a linear combination of the basis{[

1
0

]
,

[
1
1

]}
.[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]
= x

[
1
0

]
+ y

([
1
1

]
−
[
1
0

])
= (x− y)

[
1
0

]
+ y

[
1
1

]
.

Now use that we know the values of T on the vectors
[
1
0

]
,

[
1
1

]
:

T

[
x
y

]
= T

(
(x− y)

[
1
0

]
+ y

[
1
1

])
= (x− y)T

[
1
0

]
+ yT

[
1
1

]

= (x− y)

1
2
3

+ y

1
0
0

 =

 x
2x− 2y
2x− 3y

 .
Second Solution: We look for T as being given by a matrix:

T

[
x
y

]
=

a b
c d
e f

[x
y

]
.

Then the conditions on T yeild

T

[
1
0

]
=

a b
c d
e f

[1
0

]
=

ac
e

 =

1
2
3


T

[
1
1

]
=

a b
c d
e f

[1
1

]
=

a+ b
c+ d
e+ f

 =

1
0
0

 .



This leads to the equations a = 1, c = 2, e = 3, a+ b = 1, c+ d = 0, and e+ f = 0. This gives
the values of a, c, and e. Then it is easy to see that b = 0, d = −2, and f = −3. Therefore

T

[
x
y

]
=

1 0
2 −2
3 −3

[x
y

]
=

 x
2x− 2y
2x− 3y

 .
3. (10 Points) Let v1, v2, v3 be linearly independent vectors in a vector space V . Then show that

the vectors v1, 2v1 + v2, 3v1 + 2v2 + v3 are also linearly independent.
Solution: Let c1, c2, c3 ∈ F be scalars so that

c1v1 + c2(2v1 + v2) + c3(3v1 + 2v2 + v3) = 0.

To finish we need to show that c1 = c2 = c3 = 0. Regrouping gives

(c1 + 2c2 + 3c3)v1 + (c2 + 2c3)v2 + c3v3 = 0.(1)

Because v1, v2, v3 are linearly independent (and if you did not say very explicitly say this, you
lost most of the points on the problem) the coefficients of v1, v2, v3 vanish in (1) and therefore

c1 + 2c2 + 3c3 = 0

c2 + 2c3 = 0

c3 = 0.

Back solving in this gives c1 = c2 = c3 = 0, which completes the proof.
4. (10 Points) Let M2×2 be the 2 by 2 matrices over the field F and let

D =

{[
a 0
0 b

]
: a, b ∈ F

}
be the subspace of diagonal matrices. Show that any three dimensional subspace of M2×2

contains a nonzero diagonal matrix.

Solution: First note that dimD = 2 (which is clear as
{[

1 0
0 0

]
,

[
0 0
0 1

]}
is a basis of D). Let

V be a three dimensional subspace of M2×2. Then

dim(V ∩ D) = dim(D) + dim(V)− dim(V +D) = 5− dim(V +D) ≥ 1

as V + D ⊂ M2×2 so that dim(V + D) ≤ dim(M2×2) = 4. But dim(V ∩ D) ≥ 1 implies that
V ∩ D contains a nonzero element, which is the desired nonzero diagonal matrix in V.

5. (10 Points) Find (no proof required) a basis for the set of the space of vectors (x, y, z, w) ∈ R4

that satisfy

x+ y + z + w = 0

x+ y + 2z + 3w = 0.

Solution: Row reducing the matrix of coefficients of the system leads to[
1 1 1 1
1 1 2 3

]
∼
[
1 1 1 1
0 0 1 2

]
∼
[
1 1 0 −1
0 0 1 2

]
,

which implies the system is equivalent to

x = −y + w

z = −2w.

Therefore the subspace in question is

{(−y + w, y,−2w,w) : y, w ∈ R} = {y(−1, 1, 0, 0) + w(1, 0,−2, 1) : y, w ∈ R}



so that {(−1, 1, 0, 0), (1, 0,−2, 1)} is the required basis.
6. (15 Points) Show that if v1, . . . , vk are vectors in the vector space V and c1, . . . , ck ∈ F are

scalars so that

c1v1 + c2v2 + · · ·+ ckvk = 0, and ck 6= 0

then

Span{v1, . . . , vk−1} = Span{v1, . . . , vk}.
Solution: The inclusion Span{v1, . . . , vk−1} ⊆ Span{v1, . . . , vk} is clear and so we are done if
we can show Span{v1, . . . , vk} ⊆ Span{v1, . . . , vk−1}. From the relation c1v1+c2v2+· · ·+ckvk =
0 and using ck 6= 0 we can solve for vk to get

vk = −c1

ck
v1 −

c2

ck
v2 − · · · −

ck−1

ck
vk−1.

This shows vk is a linear combination of {v1, . . . , vk−1}. Therefore, by the definition of the
span of a set of vectors, vk ∈ Span{v1, . . . , vk−1}. As {v1, . . . , vk−1} ⊆ Span{v1, . . . , vk−1} we
therefore have {v1, . . . , vk−1, vk} ⊆ Span{v1, . . . , vk−1}. Thus

Span{v1, . . . , vk−1, vk} ⊆ Span Span{v1, . . . , vk−1} = Span{v1, . . . , vk−1}
and we are done.

7. (15 Points) Let U and V be subspaces of a vector space so that

dimU = 3, dimW = 4, dim(U ∩W ) = 2.

Then show directly, that is without using the theorem that dim(U +W ) = dimU + dimW −
dimU ∩W , that dim(U + W ) = 5. (So you are being ask to prove dim(U + W ) = dimU +
dimW − dim(U ∩W ) in this special case.)
Solution: Let v1, v2 be a basis for U ∩W . This can be extended to a basis v1, v2, u3 of U and
to a basis v1, v2, w3, w4 of W . We now claim that B = {v1, v2, u3, w3, w4} is a basis of U +W .
As B has 5 elements this will show that dim(U +W ) = 5. To show that B is a basis of U +W
we to show two things. First that SpanB = U +W and second that B is linearly independent.

To see that SpanB = U + W first note that {v1, v2, u3} ⊂ U and {w3, w4} ⊂ W so that
B = {v1, v2, u3, w3, w4} ⊂ U ∪W . Therefore

Span(B) ⊆ Span(U ∪W ) = U +W.

To get set containment in the other direction let x ∈ U + W . Then x = u + w where
u ∈ U and w ∈ W . As {v1, v2, u3} is a basis for U there are scalars a1, a2, a3 ∈ F so that
u = a1v1 + a2v2 + a3u3. Likewise {v1, v2, w3, w4} is a basis of W so that there are scalars
b2, b2, b3, b4 ∈ F so that w = b1v1 + b2v2 + b3w3 + b4w4. Adding these expressions for u and w
and doing a bit of regrouping gives

x = u+ w = (a1 + b1)v1 + (a2 + b2)v2 + a3u3 + b3w3 + b4w4

so that x ∈ Span ∈ Span{v1, v2, u3, w3, w4} = SpanB. As x was an arbitrary element of U+W
this shows U +W ⊆ SpanB and completes the proof that SpanB = U +W .

To see that B is linearly independent assume that there are scalars c1, . . . , c5 so that

c1v1 + c2v2 + c3u3 + c4w3 + c5w4 = 0.

We need to show that c1 = c2 = · · · = c5 = 0. Toward this end rewrite the last equation as

c1v1 + c2v2 + c3u3 = −c4w3 − c5w4.(2)

Then setting y = c1v1 + c2v2 + c3u3 = −c4w3 − c5w4 we see from y = c1v1 + c2v2 + c3u3 that
y ∈ U and from y = −c4w3−c5w4 that y ∈W . Therefore y ∈ U ∩W . Thus y can be expressed



as a linear combination of the basis elements v1, v2 of U∩W . That is y = d1v1 +d2v2. Equating
two of our expressions for y gives d1v1 + d2v2 = −c4w3 − c5w4 which can be rewritten as

d1v1 + d2v2 + c4w3 + c5w4

and as {v1, v2, w3, w4} is a basis of W , and thus linearly independent, this implies d1 = d2 =
c4 = c5 = 0. Using c4 = c5 = 0 in (2) gives

c1v1 + c2v2 + c3u3 = 0.

As {v1, v2, u3} is a basis for U this implies c1 = c2 = c3 = 0. Thus we now have c1 = c2 = c3 =
c4 = c5 = 0 which completes both the proof that B is linearly independent and the proof of
the proposition.

8. (15 Points) Let U = {u1, u2} and W = {w1, w2, w3} be two linearly independent sets in a
vector space W such that U ∪W is linearly independent. Then show

Span(U) ∩ Span(W) = {0}.
Solution 1: It is clear that {0} ⊆ Span(U) ∩ Span(W). Let x ∈ Span(U) ∩ Span(V) then
x ∈ Span(U) implies that x = a1u1 + a2u2 for some scalars a1, a2 ∈ F. Likewise x ∈ Span(V)
implies x = b1w1 + b2w2 + b3w3 for scalars b1, b2, b3 ∈ F. Setting these expressions equal to
each other gives x = a1u1 + a2u2 = b1w1 + b2w2 + b3w3 which can be rewritten as

a1u1 + a2u2 − b1w1 − b2w2 − b3w3 = 0.

As U ∪W = {u1, u2, w1, w2, w3} is linearly independent this implies a1 = a2 = b1−b2 = b3 = 0.
So x = a1u1 + a2u2 = 0. As x was an arbitrary element of Span(U)∩ Span(W) this completes
the proof that Span(U) ∩ Span(W) = {0}.
Remark: There are more hypothesis than needed in this problem. We only used that U ∪W
is linearly independent. (However if U ∪ W is linearly independent then its subsets U and
W will each be linearly independent so it is not surprising that assuming that U and W are
linearly independent is redundant.)
Solution 2: Note that U ∪W = {u1, u2, w1, w2, w3} will be a basis for SpanU + SpanW and
therefore dim(SpanU + SpanW) = 5. Whence

dim(SpanU ∩ SpanW) = dim SpanU + dim SpanW − dim(SpanU + SpanW)

= 2 + 3− 5 = 0.

As {0} is the only zero dimensional subspace this implies SpanU ∩ SpanW = {0}.


