1. Give an example of two linear equations with real coefficients in two unknowns so that (a) They have exactly one solution.
(b) The set of solutions is a line in \mathbf{R}^{2}.
(c) They have no solutions.
2. Find all solutions to

$$
\begin{aligned}
& 2 x+y+z=5 \\
& x+y-4 z=3
\end{aligned}
$$

3. The matrix

$$
A=\left[\begin{array}{ccccc}
6 & 1 & -4 & 6 & 9 \\
2 & 1 & -3 & -5 & 1 \\
2 & -1 & 4 & 4 & 5
\end{array}\right]
$$

has row canonical form

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 5 / 4 & 7 / 4 \\
0 & 1 & 0 & -51 / 2 & -11 / 2 \\
0 & 0 & 1 & -6 & -1
\end{array}\right] .
$$

Use this to find all solutions to

$$
\begin{aligned}
& 6 x+y-4 z+6 w=9 \\
& 2 x+y-3 z-5 w=1 \\
& 2 x-y+4 z+4 w=5
\end{aligned}
$$

4. Let B be an m by n matrix with $m<n$ (that is B has more more collumns than rows). Then explain why there is a nonzero column vector $x \in \mathbb{F}^{n}$ so that $B x=0$.
