Mathematics 700 Homework
 Due Monday, October 18

Problem 1. Find the trace and determinant of the following linear maps or matrices.
(a) The matrix $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ -4 & 5 & 3 \\ 7 & 5 & 4\end{array}\right]$
(b) The linear map $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by

$$
T p:=\frac{d^{2}}{d x^{2}}\left(\left(x^{2}+1\right) p(x)\right) .
$$

(c) The linear map $L: M_{2 \times 2} \rightarrow M_{2 \times 2}$ given by $L(X)=A X$ where $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in$ $M_{2 \times 2}$. Hint: I found the easiest basis for $M_{2 \times 2}$ to use in this problem was $\mathcal{B}=\left\{E_{11}, E_{21}, E_{12}, E_{22}\right\}$ where $E_{i j}$ has a one in the $i-j$ entry and zeros elsewhere.
Problem 2. Let $T: V \rightarrow V$ be a linear map and let λ be an eigenvalue of T. Then the eigenspace of of λ is $V_{\lambda}:=\{v \in V: T v=\lambda v\}$. Show that $V_{\lambda}=\operatorname{ker}(T-\lambda I)$ and conclude that V_{λ} is a subspace of V. (You can use that $\operatorname{ker}(T-\lambda I)$ is a subspace.)
Problem 3. Two linear maps $S, T: V \rightarrow V$ commute iff $S T=T S$. Show that if S and T commute and if λ is an eigenvalue of T then the eigenspace $V_{\lambda}=\operatorname{ker}(T-\lambda I)$ is invariant under S. (That is if $v \in V_{\lambda}$ then $S v \in V_{\lambda}$.)
Problem 4. (a) Problem 4 (a) from the August 1989 qualifying exam.
(b) Problem 4 (a) from the August 1990 qualifying exam.

Problem 5. Show that the characteristic polyniomial of a 2×2 matrix A is $\operatorname{char}_{A}(x)=$ $x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)$.
Problem 6. Show that if A is a 2×2 matrix then $A^{2}-\operatorname{tr}(A) A+\operatorname{det}(A) I=0$. (In light of the last problem this implies that A is a root of its characteristic polynomial.)
Problem 7. Find eigenvalues and eignenvectors of the following linear maps or matrics.
(a) The matrix $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$.
(b) The matrix $B=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 6 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 9\end{array}\right]$.
(c) The linear map $S: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $(S p)(x)=(x+1)^{2} p\left(\frac{x-1}{x+1}\right)$.

Problem 8. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix over the complex numbers. Then it is nice to be able to estimate the eigenvalues of A without having to compute them exactly. Here is a standard result about the location of the eigenvalues. For each
$i \in\{1, \ldots, n\}$ let r_{i} be the sum of the absolute values of the off diagonal elements in the i-th row. That is

$$
r_{i}:=\sum_{j \neq i}\left|a_{i j}\right| .
$$

Let D_{i} be the closed disk of radius r_{i} centered at $a_{i i}$. Explicitly:

$$
D_{i}=\left\{z \in \mathbf{C}:\left|z-a_{i i}\right| \leq r_{i}\right\} .
$$

Prove if λ is an eigenvalue of A then $\lambda \in \bigcup_{i=1}^{n} D_{i}$. Hint: If λ is an eigenvalue of A then then is a nonzero column vector $v=\left[\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{n}\end{array}\right]$ so that $A v=\lambda v$. That is

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} z_{j}=\lambda z_{i} \quad \text { for } \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Choose i_{0} to maximize $\left|z_{j}\right|$. That is $\left|z_{j}\right| \leq\left|z_{i_{0}}\right|$ for $j=1, \ldots, n$. Then let $i=i_{0}$ in (1) and rewrite as

$$
\left(\lambda-a_{i_{0} i_{0}}\right) z_{i_{0}}=\sum_{j \neq i_{0}} a_{i j} z_{j} .
$$

Now take the absolute value of both sides of this equation and use the triangle inequality and that $\left|z_{j}\right| \leq\left|z_{i_{0}}\right|$ to conclude $\left|\lambda-a_{i_{0} i_{0}}\right| \leq r_{i_{0}}$.
Problem 9. Problem 5 on the January 1993 qualifying exam. Hint: If $\operatorname{det} A=0$ then A has $\lambda=0$ as an eigenvalue. Use the last problem to show this is impossable.

