Mathematics 700 Homework Due Wednesday, October 13

Some more on matrices of linear maps. The following shows that it is possible to choose a bases for the range and domain of a linear map that puts makes the matrix particularly simple.

Problem 1. Let V and W be finite dimensional vector spaces and in let $T: V \to W$ be a linear.

1. First assume that dim V = 5, dim W = 6 and that rank T = 3. Then by rank plus nullity we have nullity T = 2. Choose a basis v_4, v_5 of ker T. Then these can be extended to a basis $\mathcal{V} = \{v_1, v_2, v_3, v_4, v_5\}$ of V (so the last two in the list are the basis of ker T.) Let $w_1 = Tv_1, w_2 = Tv_2, w_3 = Tv_3$. Than as $\operatorname{Span}\{v_1, v_2, v_3\} \cap \ker T = \{0\}$ it follows that w_1, w_2, w_3 are linearly independent. Thus we can extend $\{w_1, w_2, w_3\}$ to a basis $\mathcal{W} = \{w_1, w_2, w_3, w_4, w_5, w_6\}$ of W. Then show that in these bases the matrix of T is

2. Now assume that dim V = m, dim W = n, and that rank T = r. Then show show that it is possible to choose bases \mathcal{V} for V and \mathcal{W} for W so that the matrix $[T]_{\mathcal{V}}^{\mathcal{W}}$ has r ones down the main diaginal and all other element zero.

Quotient Spaces. If there is any one idea the characterizes modern algebra it is the idea of a quotient structure. The following problems introduce the linear algebra version of this concept. You may have seen other versions as in the integers mod n, the quotient of a group by a normal subgroup, and the quotient of a ring by an ideal.

Let V be a vector space over the field **F** and W a subspace of V. Then define an equivalence relation \sim_W by

$$v_1 \sim_W v_2$$
 if and only if $v_2 - v_1 \in W$.

Problem 1. Show that this is an equivalence relation. (Recall a relation \sim on a set V is an *equivalence relation* iff the three conditions (1) $x \sim x$ for all $x \in V$ (it is *reflective*) (2) $x \sim y$ implies $y \sim x$ for all $x, y \in V$ (\sim is *symmetric*) and (3) $x \sim y$ and $y \sim z$ implies $x \sim y$ (\sim is *transitive*) hold.)

Denote by $[v]_W$ the equivalence class of $v \in V$ under the equivalence relation \sim_W . That is

$$[v]_W := \{ u \in V : u \sim_W v \}.$$

Problem 2. Show $[v]_W = v + W$ where $v + W = \{v + w : w \in W\}$.

Let V/W be the set of all equivalence classes of \sim_W . That is

$$V/W := \{ [v]_W : v \in V \} = \{ v + W : v \in V \}$$

The equivalence class $[v]_W = v + W$ is often called the **coset of** v **in** V/W.

Problem 3. Let $V = \mathbb{R}^2$ and let W be the subspace of points of V of points (x, y) with y = -2x. Then draw pictures of the coset of (1, 1) in V/W and the coset of (3, -2) in V/W. What is a geometric description of the coset of $v \in \mathbb{R}^2$ in V/W?

Define a sum and scalar multiplication in V/W by

$$[v_1]_W + [v_2]_W := [v_1 + v_2]_W, \quad c[v]_W := [cv]_W$$

where $v_1, v_2, v \in V$ and $c \in \mathbf{F}$.

Problem 4. Show this is well defined. Recall the term *well defined* is used in mathematics to mean "is independent of the choices made in the definition". In this particular case this means you need to show

 $[v_1]_W = [v'_1]_W$ and $[v_2]_W = [v'_2]_W$ implies $[v_1 + v_2]_W = [v'_1 + v'_2]_W$

and

$$[v]_W = [v']_W$$
 implies $[cv]_W = [cv']_W$.

Proposition 1. With these operations V/W is a vector space.

Problem 5. Prove this.

Define a map $\pi: V \to V/W$ by $\pi(v) = [v]_W$. (Or in slightly different notation $\pi v = v + W$.) This is the **natural projection** or **canonical projection** of V onto the quotient space V/W.

Problem 6. The natural projection $\pi: V \to V/W$ is a linear map and ker $(\pi) = W$.

Problem 7. If V is finite dimensional then what is the dimension of V/W in terms of dim V and dim W? Prove your answer is correct. (HINT: Rank plus nullity.)

Problem 8. In the example of Problem 3 draw some pictures of cosets $v_1 + W$ and $v_2 + W$ what their sum $(v_1 + W) + (v_2 + W)$ and the linear combination $2(v_1 + W) - 3(v_2 + W)$ for a few choices of v_1 and v_2 .

We now give a very basic result. In the context of groups this is called *the first homomorphism theorem*.

Theorem 1. Let V and U be vector spaces and let $T: V \to U$ be a surjective (that is onto) linear map. Then the vector space $V/\ker T$ is isomorphic to U. (Written as $U \approx V/\ker T$.)

We are not assuming that V and U are finite dimensional so it is not enough to just compute dimensions.

Problem 9. Prove this along the following lines: First to simplify notation set $W := \ker T$ so that

$$W = \{v \in V : Tv = 0\}.$$

Then we wish to show that $V/W \approx U$. Define a map $\widetilde{T} \colon V/W \to U$ by

$$\tilde{T}[v]_W = Tv.$$

- (a) Show that \widetilde{T} is well defined. (That is if $[v_1]_W = [v_2]_W$ then $Tv_1 = Tv_2$.)
- (b) Show that \widetilde{T} is linear.
- (c) Show that \widetilde{T} is onto (i.e. surjective). (HINT: Use that T is onto so that every $u \in U$ is of the form u = Tv for some $v \in V$.)
- (d) Show that \widetilde{T} is one to one (i.e. injective). (HINT: You wish to show that if $\widetilde{T}[v]_W = 0$ then $[v]_W = [0]_W$. But $[v]_W = [0]_W$ if and only if $v \in W = \ker T$.) \Box