
Mathematics 700 Homework
Due Wednesday, October 13

Some more on matrices of linear maps. The following shows that it is possible
to choose a bases for the range and domain of a linear map that puts makes the matrix
particularly simple.

Problem 1. Let V and W be finite dimensional vector spaces and in let T : V →W
be a linear.

1. First assume that dim V = 5, dimW = 6 and that rankT = 3. Then by
rank plus nullity we have nullity T = 2. Choose a basis v4, v5 of ker T . Then
these can be extended to a basis V = {v1, v2, v3, v4, v5} of V (so the last two in
the list are the basis of kerT .) Let w1 = Tv1, w2 = Tv2, w3 = Tv3. Than as
Span{v1, v2, v3}∩kerT = {0} it follows that w1, w2, w3 are linearly independent.
Thus we can extend {w1, w2, w3} to a basis W = {w1, w2, w3, w4, w5, w6} of W .
Then show that in these bases the matrix of T is

[T ]WV =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
2. Now assume that dimV = m, dimW = n, and that rankT = r. Then show

show that it is possible to choose bases V for V andW for W so that the matrix
[T ]WV has r ones down the main diaginal and all other element zero.

Quotient Spaces. If there is any one idea the characterizes modern algebra it is
the idea of a quotient structure. The following problems introduce the linear algebra
version of this concept. You may have seen other versions as in the integers mod n,
the quotient of a group by a normal subgroup, and the quotient of a ring by an ideal.

Let V be a vector space over the field F and W a subspace of V . Then define an
equivalence relation ∼W by

v1 ∼W v2 if and only if v2 − v1 ∈W.
Problem 1. Show that this is an equivalence relation. (Recall a relation ∼ on a set
V is an equivalence relation iff the three conditions (1) x ∼ x for all x ∈ V (it is
reflective) (2) x ∼ y implies y ∼ x for all x, y ∈ V (∼ is symmetric) and (3) x ∼ y
and y ∼ z implies x ∼ y (∼ is transitive) hold.)

Denote by [v]W the equivalence class of v ∈ V under the equivalence relation ∼W .
That is

[v]W := {u ∈ V : u ∼W v}.



Problem 2. Show [v]W = v +W where v +W = {v + w : w ∈W}.
Let V/W be the set of all equivalence classes of ∼W . That is

V/W := {[v]W : v ∈ V } = {v +W : v ∈ V }.
The equivalence class [v]W = v +W is often called the coset of v in V/W .

Problem 3. Let V = R2 and let W be the subspace of points of V of points (x, y)
with y = −2x. Then draw pictures of the coset of (1, 1) in V/W and the coset of
(3,−2) in V/W . What is a geometric description of the coset of v ∈ R2 in V/W?

Define a sum and scalar multiplication in V/W by

[v1]W + [v2]W := [v1 + v2]W , c[v]W := [cv]W

where v1, v2, v ∈ V and c ∈ F.

Problem 4. Show this is well defined. Recall the term well defined is used in
mathematics to mean “is independent of the choices made in the definition”. In this
particular case this means you need to show

[v1]W = [v′1]W and [v2]W = [v′2]W implies [v1 + v2]W = [v′1 + v′2]W

and
[v]W = [v′]W implies [cv]W = [cv′]W .

Proposition 1. With these operations V/W is a vector space.

Problem 5. Prove this.

Define a map π : V → V/W by π(v) = [v]W . (Or in slightly different notation
πv = v+W .) This is the natural projection or canonical projection of V onto
the quotient space V/W .

Problem 6. The natural projection π : V → V/W is a linear map and ker(π) =
W .

Problem 7. If V is finite dimensional then what is the dimension of V/W in terms
of dimV and dimW? Prove your answer is correct. (Hint: Rank plus nullity.)

Problem 8. In the example of Problem 3 draw some pictures of cosets v1 +W and
v2 +W what their sum (v1 +W ) + (v2 +W ) and the linear combination 2(v1 +W )−
3(v2 +W ) for a few choices of v1 and v2.

We now give a very basic result. In the context of groups this is called the first
homomorphism theorem.

Theorem 1. Let V and U be vector spaces and let T : V → U be a surjective (that
is onto) linear map. Then the vector space V/ kerT is isomorphic to U . (Written as
U ≈ V/ kerT .)



We are not assuming that V and U are finite dimensional so it is not enough to
just compute dimensions.

Problem 9. Prove this along the following lines: First to simplify notation set W :=
kerT so that

W = {v ∈ V : Tv = 0}.
Then we wish to show that V/W ≈ U . Define a map T̃ : V/W → U by

T̃ [v]W = Tv.

(a) Show that T̃ is well defined. (That is if [v1]W = [v2]W then Tv1 = Tv2.)

(b) Show that T̃ is linear.

(c) Show that T̃ is onto (i.e. surjective). (Hint: Use that T is onto so that every
u ∈ U is of the form u = Tv for some v ∈ V .)

(d) Show that T̃ is one to one (i.e. injective). (Hint: You wish to show that if

T̃ [v]W = 0 then [v]W = [0]W . But [v]W = [0]W if and only if v ∈W = kerT .)


