Mathematics 700 Homework due Wednesday, October 6

The following are problems on finding the matrices of linear maps. There are examples in Chapter 10 of the text that are relevant to these problems.

1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T(x,y) := (x - 2y, -4x + y, 7x - 11y).$$

Then find the matrix of T with respect to the standard bases of each of \mathbb{R}^2 and \mathbb{R}^3 . (Recall that the standard basis of \mathbb{R}^n is the basis $e_1 = (1, 0, 0, \ldots, 0), e_2 = (0, 1, 0, \ldots, 0), e_3 = (0, 0, 1, \ldots, 0) \ldots$)

- 2. With T as in the last problem find the matrix of T with respect to the bases $\mathcal{V} = \{(1,2), (3,2)\}$ of \mathbb{R}^2 and $\mathcal{W} := \{(1,1,1), (0,2,1), (0,0,3)\}$ of \mathbb{R}^3 .
- 3. Letting \mathcal{P}_3 be the real polynomials of degree ≤ 3 and using the standard basis $\mathcal{V} := \{1, x, x^2, x^3\}$ of \mathcal{P}_3 find the matrices, the rank and the nullity of the following linear maps
 - (a) (Tp)(x) = p(x-2), (b) $(Cp)(x) = (x+1)^3 p\left(\frac{x-1}{x+1}\right)$, (c) Ap = p + p' + p'' + p''' + p'''',
 - (d) $(Pp)(x) = e^{-x} \int_{-\infty}^{x} p(t)e^{t} dt.$
 - (e) $(Bp)(x) = \int_{0}^{x} p'(t) dt$ (f) $(Vp)(x) = \frac{d}{dx} \int_{0}^{x} p(t) dt$
- 4. Let $M_{2\times 2}$ be the vector space of 2×2 matrices over the real numbers. Let

$$A := \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

Use for $M_{2\times 2}$ the the ordered basis basis $\mathcal{V} := \{E_{11}, E_{12}, E_{21}, E_{22}$ where

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Then find the matrics of the following linear maps from $M_{2\times 2}$ to itself.

(a) LX = AX, (b) RX = XA, (c) CX = AX - XA,

- (d) $TX = X^t$ (the transpose of X),
- (e) $SX = \frac{1}{2}(X + X^t)$ and find the rank and nullity of this map, and
- (f) $GX = \frac{1}{2}(X X^t)$ and find the rank and nullity of this map.
- 5. The set of complex numbers $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$ is a two dimensional vector space over the real numbers \mathbb{R} . Using the basis $\mathcal{B} = \{1, i\}$ for this real vector space find the matrices of the following linear maps
 - (a) Jz = iz,
 - (b) $Cz = \overline{z}$ (where \overline{z} is the complex conjugate of z),
 - (c) Tz = (2+3i)z,
 - (d) Mz = (a + bi)z, and (e) $Rz = \frac{1}{2}(z + \overline{z})$.