## Mathematics 700 Homework due Wednesday, October 6

The following are problems on finding the matrices of linear maps. There are examples in Chapter 10 of the text that are relevant to these problems.

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
T(x, y):=(x-2 y,-4 x+y, 7 x-11 y) .
$$

Then find the matrix of $T$ with respect to the standard bases of each of $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$. (Recall that the standard basis of $\mathbb{R}^{n}$ is the basis $\left.e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), e_{3}=(0,0,1, \ldots, 0) \ldots\right)$
2. With $T$ as in the last problem find the matrix of $T$ with respect to the bases $\mathcal{V}=\{(1,2),(3,2)\}$ of $\mathbb{R}^{2}$ and $\mathcal{W}:=\{(1,1,1),(0,2,1),(0,0,3)\}$ of $\mathbb{R}^{3}$.
3. Letting $\mathcal{P}_{3}$ be the real polynomials of degree $\leq 3$ and using the standard basis $\mathcal{V}:=\left\{1, x, x^{2}, x^{3}\right\}$ of $\mathcal{P}_{3}$ find the matrices, the rank and the nullity of the following linear maps
(a) $(T p)(x)=p(x-2)$,
(b) $(C p)(x)=(x+1)^{3} p\left(\frac{x-1}{x+1}\right)$,
(c) $A p=p+p^{\prime}+p^{\prime \prime}+p^{\prime \prime \prime}+p^{\prime \prime \prime \prime}$,
(d) $(P p)(x)=e^{-x} \int_{-\infty}^{x} p(t) e^{t} d t$.
(e) $(B p)(x)=\int_{0}^{x} p^{\prime}(t) d t$
(f) $(V p)(x)=\frac{d}{d x} \int_{0}^{x} p(t) d t$
4. Let $M_{2 \times 2}$ be the vector space of $2 \times 2$ matrices over the real numbers. Let

$$
A:=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Use for $M_{2 \times 2}$ the the ordered basis basis $\mathcal{V}:=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right.$ where

$$
E_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], E_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], E_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], E_{22}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Then find the matrics of the following linear maps from $M_{2 \times 2}$ to itself.
(a) $L X=A X$,
(b) $R X=X A$,
(c) $C X=A X-X A$,
(d) $T X=X^{t}$ (the transpose of $X$ ),
(e) $S X=\frac{1}{2}\left(X+X^{t}\right)$ and find the rank and nullity of this map, and
(f) $G X=\frac{1}{2}\left(X-X^{t}\right)$ and find the rank and nullity of this map. 5. The set of complex numbers $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$ is a two dimensional vector space over the real numbers $\mathbb{R}$. Using the basis $\mathcal{B}=\{1, i\}$ for this real vector space find the matrices of the following linear maps
(a) $J z=i z$,
(b) $C z=\bar{z}$ (where $\bar{z}$ is the complex conjugate of $z$ ),
(c) $T z=(2+3 i) z$,
(d) $M z=(a+b i) z$, and
(e) $R z=\frac{1}{2}(z+\bar{z})$.

