Mathematics 700 Homework
 Due Monday, September 27

Quotient Spaces. If there is any one single idea the characterizes modern algebra it is the idea of a quotient structure. The following problems introduce the linear algebra version of this concept. You have may have seen other version as in the integers $\bmod n$, the quotient of a group by a normal subgroup, and the quotient of a ring by an ideal.

Let V be a vector space over the field \mathbf{F} and W a subspace of V. Then define an equivalence relation \sim_{W} by

$$
v_{1} \sim_{W} v_{2} \quad \text { if and only if } \quad v_{2}-v_{1} \in W
$$

Problem 1. Show that this is an equivalence relation. (Recall a relation \sim on a set V that \sim_{W} is an equivalence relation iff the three conditions (1) $x \sim x$ for all $x \in V$ (i.e. it is reflective) (2) $x \sim y$ implies $y \sim x$ for all $x, y \in V$ (i.e. \sim is symmetric) and (3) $x \sim y$ and $y \sim z$ implies $x \sim y$ (i.e. \sim is transitive).)

Denote by $[v]_{W}$ the equivalence class of $v \in V$ under the equivalence relation \sim_{W}. That is

$$
[v]_{W}:=\left\{u \in V: u \sim_{W} v\right\} .
$$

Problem 2. Show $[v]_{W}=v+W$ where $v+W=\{v+w: w \in W\}$.
Let V / W be the set of all equivalence classes of \sim_{W}. That is

$$
V / W:=\left\{[v]_{W}: v \in V\right\}=\{v+W: v \in V\} .
$$

The equivalence class $[v]_{W}=v+W$ is often called the coset of v in V / W.
Problem 3. Let $V=\mathbf{R}^{2}$ and let W be the subspace of points of V of points (x, y) with $y=-2 x$. Then draw pictures of the coset of $(1,1)$ in V / W and the coset of $(3,-2)$ in V / W. What is a geometric description of the coset of $v \in \mathbf{R}$ in V / W ?

Define a sum and scalar multiplication in V / W by

$$
\left[v_{1}\right]_{W}+\left[v_{2}\right]_{W}:=\left[v_{1}+v_{2}\right]_{W} \quad c[v]_{W}:=[c v]_{W}
$$

where $v_{1}, v_{2}, v \in V$ and $c \in \mathbf{F}$.
Problem 4. Show this is well defined. The term well defined is used in mathematics to mean "is independent of the choices made in the definition". In this particular case this means you need to show

$$
\left[v_{1}\right]_{W}=\left[v_{1}^{\prime}\right]_{W} \quad \text { and } \quad\left[v_{2}\right]_{W}=\left[v_{2}^{\prime}\right]_{W} \quad \text { implies } \quad\left[v_{1}+v_{2}\right]_{W}=\left[v_{1}^{\prime}+v_{2}^{\prime}\right]_{W}
$$

and

$$
[v]_{W}=\left[v^{\prime}\right]_{W} \quad \text { implies } \quad[c v]_{W}=\left[c v^{\prime}\right]_{W}
$$

Proposition 1. With these operations V / W is a vector space.

Problem 5. Prove this.
Define a map $\pi: V \rightarrow V / W$ by $\pi(v)=[v]_{W}$. (Or in slightly different notation $\pi v=V+W$.) This is the natural projection or canonical projection of V onto the quotient space V / W.
Problem 6. The natural projection $\pi: V \rightarrow V / W$ is a linear map and $\operatorname{ker}(\pi)=$ W.

Problem 7. If V is finite dimensional then what is the dimension of V / W in terms of $\operatorname{dim} V$ and $\operatorname{dim} W$? Prove your answer is correct. (Hint: Rank plus nullity.)
Problem 8. In the example of Problem 3 draw some pictures of cosets $v_{2}+W$ and $v_{2}+W$ what their sum $\left(v_{1}+W\right)+\left(v_{2}+W\right)$ and the linear combination $2\left(v_{1}+W\right)-$ $3\left(v_{2}+W\right)$ for a few choices of v_{1} and v_{2}.

The following are review:
Problem 9. If the vectors v_{1}, v_{2}, v_{3} in the complex vector space V are linearly independent then show

1. The vectors $u_{1}=v_{1}, u_{2}=v_{1}+v_{2}, u_{3}=v_{1}+v_{2}+v_{3}$ are also linear independent.
2. The vectors

$$
\begin{aligned}
& w_{1}=v_{1}+2 v_{2}+3 v_{3} \\
& w_{2}=4 v_{1}+5 v_{2}+6 v_{3} \\
& w_{3}=7 v_{1}+8 v_{2}+9 v_{3}
\end{aligned}
$$

are linearly dependent.
Problem 10. Let $M_{3 \times 3}$ the three by three real matrices. Define two subspaces of $M_{3 \times 3}$ by

$$
\begin{aligned}
\mathcal{S} & :=\left\{A \in M_{3 \times 3}: A^{t}=A\right\} \\
\mathcal{A} & :=\left\{A \in M_{3 \times 3}: A^{t}=-A\right\}
\end{aligned}
$$

where A^{t} is the transpose of A. (That is if $A=\left[a_{i j}\right]$, then $A^{t}=\left[a_{j i}\right]$.) Elements of \mathcal{S} are called symmetric matrices and elements of \mathcal{A} are called skew symmetric or anti-symmetric matrices. Show the following

1. $\operatorname{dim} \mathcal{S}=6$,
2. $\operatorname{dim} \mathcal{A}=3$,
3. $M_{3 \times 3}=\mathcal{S} \oplus \mathcal{A}$.
4. Show that any four dimensional subspace of $M_{3 \times 3}$ contains at least one nonzero symmetric matrix.
5. Give an example of a four dimensional subspace of $M_{3 \times 3}$ that does not contain any nonzero skew symmetric matrix.
