Mathematics 700 Homework Due Monday, September 27

Quotient Spaces. If there is any one single idea the characterizes modern algebra it is the idea of a quotient structure. The following problems introduce the linear algebra version of this concept. You have may have seen other version as in the integers mod n, the quotient of a group by a normal subgroup, and the quotient of a ring by an ideal.

Let V be a vector space over the field **F** and W a subspace of V. Then define an equivalence relation \sim_W by

$$v_1 \sim_W v_2$$
 if and only if $v_2 - v_1 \in W$.

Problem 1. Show that this is an equivalence relation. (Recall a relation \sim on a set V that \sim_W is an *equivalence relation* iff the three conditions (1) $x \sim x$ for all $x \in V$ (i.e. it is *reflective*) (2) $x \sim y$ implies $y \sim x$ for all $x, y \in V$ (i.e. \sim is *symmetric*) and (3) $x \sim y$ and $y \sim z$ implies $x \sim y$ (i.e. \sim is *transitive*).)

Denote by $[v]_W$ the equivalence class of $v \in V$ under the equivalence relation \sim_W . That is

$$[v]_W := \{ u \in V : u \sim_W v \}.$$

Problem 2. Show $[v]_W = v + W$ where $v + W = \{v + w : w \in W\}$.

Let V/W be the set of all equivalence classes of \sim_W . That is

$$V/W := \{ [v]_W : v \in V \} = \{ v + W : v \in V \}$$

The equivalence class $[v]_W = v + W$ is often called the **coset of** v in V/W.

Problem 3. Let $V = \mathbb{R}^2$ and let W be the subspace of points of V of points (x, y) with y = -2x. Then draw pictures of the coset of (1, 1) in V/W and the coset of (3, -2) in V/W. What is a geometric description of the coset of $v \in \mathbb{R}$ in V/W?

Define a sum and scalar multiplication in V/W by

$$[v_1]_W + [v_2]_W := [v_1 + v_2]_W \quad c[v]_W := [cv]_W$$

where $v_1, v_2, v \in V$ and $c \in \mathbf{F}$.

Problem 4. Show this is well defined. The term *well defined* is used in mathematics to mean "is independent of the choices made in the definition". In this particular case this means you need to show

 $[v_1]_W = [v'_1]_W$ and $[v_2]_W = [v'_2]_W$ implies $[v_1 + v_2]_W = [v'_1 + v'_2]_W$ and

$$[v]_W = [v']_W$$
 implies $[cv]_W = [cv']_W$.

Proposition 1. With these operations V/W is a vector space.

Problem 5. Prove this.

Define a map $\pi: V \to V/W$ by $\pi(v) = [v]_W$. (Or in slightly different notation $\pi v = V + W$.) This is the **natural projection** or **canonical projection** of V onto the quotient space V/W.

Problem 6. The natural projection $\pi: V \to V/W$ is a linear map and ker $(\pi) = W$.

Problem 7. If V is finite dimensional then what is the dimension of V/W in terms of dim V and dim W? Prove your answer is correct. (HINT: Rank plus nullity.)

Problem 8. In the example of Problem 3 draw some pictures of cosets $v_2 + W$ and $v_2 + W$ what their sum $(v_1 + W) + (v_2 + W)$ and the linear combination $2(v_1 + W) - 3(v_2 + W)$ for a few choices of v_1 and v_2 .

The following are review:

Problem 9. If the vectors v_1, v_2, v_3 in the complex vector space V are linearly independent then show

1. The vectors $u_1 = v_1$, $u_2 = v_1 + v_2$, $u_3 = v_1 + v_2 + v_3$ are also linear independent.

2. The vectors

$$w_1 = v_1 + 2v_2 + 3v_3$$

$$w_2 = 4v_1 + 5v_2 + 6v_3$$

$$w_3 = 7v_1 + 8v_2 + 9v_3$$

are linearly dependent.

Problem 10. Let $M_{3\times 3}$ the three by three real matrices. Define two subspaces of $M_{3\times 3}$ by

$$\mathcal{S} := \{A \in M_{3 \times 3} : A^t = A\}$$
$$\mathcal{A} := \{A \in M_{3 \times 3} : A^t = -A\}$$

where A^t is the transpose of A. (That is if $A = [a_{ij}]$, then $A^t = [a_{ji}]$.) Elements of S are called **symmetric** matrices and elements of A are called **skew symmetric** or **anti-symmetric** matrices. Show the following

- 1. dim $\mathcal{S} = 6$,
- 2. dim $\mathcal{A} = 3$,
- 3. $M_{3\times 3} = \mathcal{S} \oplus \mathcal{A}$.
- 4. Show that any four dimensional subspace of $M_{3\times 3}$ contains at least one nonzero symmetric matrix.
- 5. Give an example of a four dimensional subspace of $M_{3\times 3}$ that does not contain any nonzero skew symmetric matrix.