Mathematics 700 Homework Due Wednesday, September 15

1. Find a basis for the set of vectors in $\mathbf{R}^{4}=\{(x, y, z, w): x, y, z, w \in \mathbf{R}\}$ so that the two conditions

$$
\begin{aligned}
x+2 y-3 z+w & =0 \\
2 x-3 y+5 z-2 w & =0
\end{aligned}
$$

hold.
2. Let V and W be subspaces of \mathbf{R}^{8} so that $\operatorname{dim} V=4$ and $\operatorname{dim} W=5$. Show that there is a nonzero vector in $V \cap W$.
3. If V is a finite dimensional vector space and U a subspace of V then the codimension of W in V is defined by

$$
\operatorname{codim}_{V} W:=\operatorname{dim} V-\operatorname{dim} W
$$

When the space V is clear from context we drop the subscript of V and just write codim W. If U and W are subspaces of V then derive formulas for $\operatorname{codim}(U \cap W)$ and $\operatorname{codim}(U+W)$. (Hint: What to you know about $\operatorname{dim}(U \cap W)$ and $\operatorname{dim}(U+W)$?)
4. Let \mathcal{P}_{3} be the vector space of all polynomials of degree ≤ 3 with real coefficients. Define two subsets \mathcal{D} and \mathcal{M} of \mathcal{P}_{3} by

$$
\begin{aligned}
\mathcal{D} & :=\{p(x): p(x+2)-2 p(x+1)+p(x)=0\} \\
\mathcal{M} & :=\{p(x): p(2 x-2)=4 p(x)\}
\end{aligned}
$$

Show that both \mathcal{D} and \mathcal{M} are subspaces of \mathcal{P}_{3} and find bases for each of them.

