Mathematics 700 Homework Due Wednesday, September 15

1. Find a basis for the set of vectors in $\mathbf{R}^4 = \{(x, y, z, w) : x, y, z, w \in \mathbf{R}\}$ so that the two conditions

$$x + 2y - 3z + w = 0$$
$$2x - 3y + 5z - 2w = 0$$

hold.

- 2. Let V and W be subspaces of \mathbb{R}^8 so that dim V = 4 and dim W = 5. Show that there is a nonzero vector in $V \cap W$.
- 3. If V is a finite dimensional vector space and U a subspace of V then the *codimension* of W in V is defined by

 $\operatorname{codim}_V W := \dim V - \dim W.$

When the space V is clear from context we drop the subscript of V and just write $\operatorname{codim} W$. If U and W are subspaces of V then derive formulas for $\operatorname{codim}(U \cap W)$ and $\operatorname{codim}(U+W)$. (HINT: What to you know about $\dim(U \cap W)$ and $\dim(U+W)$?)

4. Let \mathcal{P}_3 be the vector space of all polynomials of degree ≤ 3 with real coefficients. Define two subsets \mathcal{D} and \mathcal{M} of \mathcal{P}_3 by

$$\mathcal{D} := \{ p(x) : p(x+2) - 2p(x+1) + p(x) = 0 \}$$
$$\mathcal{M} := \{ p(x) : p(2x-2) = 4p(x) \}.$$

Show that both \mathcal{D} and \mathcal{M} are subspaces of \mathcal{P}_3 and find bases for each of them.