Mathematics 700 Homework Due Wednesday, September 7

- 1. What is the span of (1,0,1), (0,1,1) and (1,1,1) in \mathbb{R}^3 ?
- 2. What is the span of (1,0,1), (0,1,1) and (2,3,-3) in \mathbb{R}^3 ?
- 3. Give an example of there vectors in \mathbb{R}^3 so that any two are linear independent, but the set of all three is linearly dependent.
- 4. Let \mathcal{P}_n the real polynomials of degree $\leq n$. What is the dimension of \mathcal{P}_n . Prove your result by finding a basis of \mathcal{P}_n .
- 5. Let $z_1, z_2, z_3, z_4 \in \mathbb{C}$ be distinct complex numbers. Then when are the vectors

$$v_1 = (1, 1, 1, 1)$$

$$v_2 = (z_1, z_2, z_3, z_4)$$

$$v_3 = (z_1^2, z_2^2, z_3^2, z_4^2)$$

$$v_3 = (z_1^3, z_2^3, z_3^3, z_4^3)$$

linearly independent? Prove your result. (HINT: It is not hard to do this problem by direct calculation, but here is a less messy method. If $c_1, \ldots, c_4 \in \mathbb{C}$ so that $c_1v_1 + c_2v_2 + c_3v_2 + c_4v_4 = 0$ then let p(x) be the polynomial $p(x) = c_1 + c_2x + c_3x^2 + c_4x^3$. Then $p(z_k) = 0$ for $k = 1, \ldots, 4$. How many roots does a polynomial of degree ≤ 3 have?)

6. Let \mathcal{P}_3 be the polynomials of degree ≤ 3 over the field \mathbf{F} . Let $a_1, a_2, a_3, a_4 \in \mathbf{F}$ be distinct. Let $\ell_i(x)$ for $i = 1, \ldots, 4$ be the polynomials

$$\ell_1(x) = \frac{(x - a_2)(x - a_3)(x - a_4)}{(a_1 - a_2)(a_1 - a_3)(a_1 - a_4)},$$

$$\ell_2(x) = \frac{(x - a_1)(x - a_3)(x - a_4)}{(a_2 - a_1)(a_2 - a_3)(a_2 - a_4)},$$

$$\ell_3(x) = \frac{(x - a_1)(x - a_2)(x - a_4)}{(a_3 - a_1)(a_3 - a_2)(a_3 - a_4)},$$

$$\ell_4(x) = \frac{(x - a_1)(x - a_2)(x - a_3)}{(a_4 - a_1)(a_4 - a_2)(a_4 - a_3)}.$$

These are the **Lagrange interpolation polynomials** with **nodes** at a_1, \ldots, a_4 . (You are not responsible for this terminology, but it is standard and you will likely see it again in other classes.)

(a) Show that $\ell_i(a_j) = \delta_{ij}$ where δ is the **Kronecker delta function**:

$$\delta_{ij} := \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$

- (b) Show that $\ell_1, \ell_2, \ell_3, \ell_4$ is a basis of \mathcal{P}_3 . (HINT: To show linear independence set a linear combination of $\ell_1, \ell_2, \ell_3, \ell_4$ to 0 and evaluate this linear combination at a_1, a_2, a_3, a_4 and use that $\ell_i(a_i) = \delta_{ij}$.)
- (c) Let $b_1, b_2, b_3, b_4 \in \mathbf{F}$. Let

$$p(x) = b_1 \ell_1(x) + b_2 \ell_2(x) + b_3 \ell_3(x) + b_4 \ell_4(x).$$

The show that $p(a_i) = b_i$ for i = 1, ..., 4.

- (d) OPTIONAL EXTRA CREDIT: Extend these results to \mathcal{P}_n for $n \geq 1$.
- 7. Let \mathcal{P}_2 be the vector space of all real polynomials of degree ≤ 2 .
 - (a) Letting $\mathcal{P}_1 \subset \mathcal{P}_2$ in the natural way, show that \mathcal{P}_1 is a two dimensional subspace of \mathcal{P}_2 .
 - (b) For any $a \in \mathbf{R}$ show that $\mathcal{Z}(a) := \{p(x) \in \mathcal{P}_2 : p(a) = 0\}$ is a two dimensional subspace of \mathcal{P}_2 by giving a basis of $\mathcal{Z}(a)$.
 - (c) True or False: If \mathcal{V} is a two dimensional subspace of \mathcal{P}_2 then either $\mathcal{V} = \mathcal{P}_1$ or $\mathcal{V} = \mathcal{Z}(a)$ for some $a \in \mathbf{R}$? Prove your answer is correct.
- 8. Let V be a vector space with $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_m\}$ subsets of V with the same finite number of elements. Assume that $\{u_1, \ldots, u_m\}$ is linearly independent and that

$$\operatorname{Span}\{u_1,\ldots,u_m\}\subseteq\operatorname{Span}\{v_1,\ldots,v_m\}.$$

Then show $\operatorname{Span}\{u_1,\ldots,u_m\}=\operatorname{Span}\{v_1,\ldots,v_m\}$ and that $\{v_1,\ldots,v_m\}$ is linearly independent.