Mathematics 700 Homework
 Due Wednesday, November 3

Problem 1. (a) Find the basis of $\mathbf{R}^{2 *}$ dual to the basis $v_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ of \mathbf{R}^{2}. (b) Find the basis of \mathbf{R}^{2} dual to the basis $f_{1}=\left[\begin{array}{ll}2 & 7\end{array}\right], f_{2}=\left[\begin{array}{ll}4 & 5\end{array}\right]$ of $\mathbf{R}^{2 *}$.

Problem 2. Let $A \in M_{m \times n}(\mathbf{F})$ and $B \in M_{n \times p}$. Assume that A and B are partitioned into blocks:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

where $A_{i j}$ is $m_{i} \times n_{j}$ and $B_{i j}$ is $n_{i} \times p_{j}$ for $1 \leq i, j \leq 2$. (Thus $m_{1}+m_{2}=m$, $n_{1}+n_{2}=n$ and $p_{1}+p_{2}=p$.) Show that we can multiply A and B "block at a time". That is show

$$
A B=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

(For example in this formula $A_{12} B_{22}$ is the $m_{1} \times p_{2}$ matrix obtained from the matrix multiplication of the $m_{1} \times n_{2}$ matrix A_{12} with the $n_{2} \times p_{2}$ matrix B_{22}.)

Problem 3. State the generalization of the last problem to the block product of $A B$ (with $A \in M_{m \times n}(\mathbf{F})$ and $B \in M_{n \times p}$) where A and B are partitioned into a larger number of blocks. You do not have to prove this (as it is just like the last problem, but messier). Hint: See Schaum's $\S 3.7$ pages 79-80.

Problem 4. The following are some standard facts about the relationship between how a linear operator acts on a vector space and the form of its matrix representation in an appropriate basis. This a basic part of the theory and something you should make a point of remembering for the rest of your lives. In these problems let V be a finite dimensional vector space and $T: V \rightarrow V$ a linear operator on V.
(a) Recall that a subspace $W \subset V$ is invariant under T iff $w \in W$ implies $T w \in$ W. Let $k=\operatorname{dim} W$ and $n=\operatorname{dim} V$. Choose a basis $\mathcal{V}=\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ so that $W=\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}$. Then show that W is invariant under T if and only if the matrix $A:=[T]_{\mathcal{V}}$ has the block upper triangular form

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

where A_{11} is $k \times k$ and A_{22} is $(n-k) \times(n-k)$. Hint: This is easy so please don't make it hard.
(b) A basis $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a triangular basis for T iff for $T e_{k} \in \operatorname{Span}\left\{e_{1}, \ldots, e_{k}\right\}$ for $k=1, \ldots, n$. Show that the basis \mathcal{V} is triangular for T if and only if the matrix $A=[T]_{\mathcal{V}}$ is upper triangular. Thus when $n=4$ this means that the basis
$\mathcal{V}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is triangular if and only if the matrix $A=[T]_{\mathcal{V}}$ of of the form

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22} & a_{23} & a_{24} \\
0 & 0 & a_{33} & a_{34} \\
0 & 0 & 0 & a_{44}
\end{array}\right]
$$

(In general a matix $A=\left[a_{i j}\right]$ is upper triangular iff $a_{i j}=0$ for $i>j$.) If you wish you can just do the proof in the case of $n=4$.
Problem 5. Let V and W be finite dimensional vector spaces and $T: V \rightarrow W$ a linear map. Then show

$$
\operatorname{ker}\left(T^{*}\right)=\operatorname{Image}(T)^{\perp} \quad \text { and } \quad \operatorname{Image}\left(T^{*}\right)=\operatorname{ker}(T)^{\perp}
$$

Hint: See the proofs that $\operatorname{ker}(T)=\operatorname{Image}\left(T^{*}\right)^{\circ}$ and $\operatorname{Image}(T)=\operatorname{ker}\left(T^{*}\right)^{\circ}$ on pages 155-156 of the class notes.

Problem 6. Let V be a finite dimensional vector space and U, W subspaces of V. Then show the following:
(a) $U \subseteq W$ if and only if $U^{\perp} \supseteq W^{\perp}$ (note the direction of the inclusion is reversed).
(b) $U=W$ if and only if $U^{\perp}=W^{\perp}$.

Problem 7. Let \mathcal{P}_{3} be the polynomials of degree ≤ 3 over the field \mathbf{F}. Let $a_{1}, a_{2}, a_{3}, a_{4} \in$ \mathbf{F} be distinct points. Define linear functionals $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} \in \mathcal{P}_{3}^{*}$ by

$$
\varepsilon_{i}(p):=p\left(a_{i}\right) .
$$

(a) Show that $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ is a basis of \mathcal{P}_{3}^{*}
(b) Find the basis of \mathcal{P}_{3} dual to $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$.

Hint: This only a dressed up version of a problem we did early on. So recall facts about Lagrange interpolation polynomials, or look up Problem 6 on the homework which was due on September 7 ($\# 2$ on the class web page).

Problem 8. Let V be a finite dimensional vector space and let $f_{1}, f_{2}, f \in V^{*}$ be linear functionals on V. Show that f is a linear combination of f_{1} and f_{2} if and only if $\operatorname{ker}\left(f_{1}\right) \cap \operatorname{ker}\left(f_{2}\right) \subseteq \operatorname{ker}(f)$. Remark: This generalizes as follows: If $f_{1}, \ldots, f_{k}, f \in V^{*}$ then $f \in \operatorname{Span}\left\{f_{1}, \ldots, f_{k}\right\}$ if and only if $\bigcap_{i=1}^{k} \operatorname{ker}\left(f_{i}\right) \subseteq \operatorname{ker}(f)$. The proof for $k=2$ and the general case are basically the same.

Problem 9. Let V and W be finite dimensional vector spaces. Let $f \in V^{*}$ be linear functional on V and $w \in W$ an element of W. Define a map $w \otimes f: V \rightarrow W$ by

$$
(w \otimes f)(v)=f(v) w .
$$

It is not hard to see that $w \otimes f$ is linear.
(a) Show if $f \neq 0$ and $w \neq 0$ then $w \otimes f$ has rank one.
(b) Conversely show that if $T: V \rightarrow W$ has rank one that there is an $f \in V^{*}$ and a $w \in W$ so that $T=w \otimes f$. Hint: Choose $w \in \operatorname{Image} T$ with $w \neq 0$. Then as T has rank one $\{w\}$ is a basis of $\operatorname{Image}(T)$. For any $v \in V$ we have $T v \in \operatorname{Image}(T)$ and thus $T v=c w$ for some scalar c. How does c depend on v ?

Problem 10. Finally here is one just for fun. (Well we will also be using this result latter.) Recall from calculus that if $a \in R$ has $|a|<1$ then $1 /(1-a)$ can be computed by the geometric series

$$
\begin{equation*}
\frac{1}{1-a}=1+a+a^{2}+a^{3}+\cdots=\sum_{k=0}^{\infty} a^{k} . \tag{1}
\end{equation*}
$$

This has a very neat generalization to matrices. A matrix $A \in M_{n \times n}$ is nilpotent iff for some $m \geq 1$ we have $A^{m}=0$. As examples you can check that all of the following are nilpotent.

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 12 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
4 & 9 & 0 & 0 \\
-3 & 7 & 4 & 0
\end{array}\right]
$$

Show that if A is nilpotent, say $A^{m}=0$, then $I-A$ is invertiable and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots+A^{m-1}
$$

Note this is exactly like putting $a=A$ in the series (1) using that $A^{k}=0$ for $k \geq m$. Hint: Set $B=I+A+A^{2}+\cdots+A^{m-1}$ and by direct multiplication show that $(I-A) B=B(I-A)=I$.

