Mathematics 700 Final

Name:

Show your work to get credit. An answer with no work will not get credit.

- 1. Define the following:
 - (a) eigenvalue.
 - (b) eigenvector.
 - (c) coordinates of a vector relative to a basis.
 - (d) the three elementary row operations.
 - (e) the Smith Normal Form of a matrix over a Euclidean domain.
 - (f) V is the direct sum of W_1, \ldots, W_k .
- 2. Let V be a vector space and let $v_1, \ldots, v_n \in V$ be linearly independent vectors. Let $v \in V$ be a vector so that $v \notin \text{Span}\{v_1, \ldots, v_n\}$. Show that $\{v_1, \ldots, v_n, v\}$ is a linearly independent set.
- 3. Let $M_{k \times k}(\mathbf{R})$ be the vector space of $k \times k$ matrices over the real numbers. $T: M_{3 \times 3}(\mathbf{R}) \to M_{2 \times 2}(\mathbf{R})$ be linear. Show there is a nonzero symmetric matrix, A, so that T(A) = 0. (Recall that A is symmetric iff $A^t = A$ where A^t is the transpose of A.)
- 4. What is the Jordan canonical form, over the complex numbers, of a matrix that has elementary divisors x 1, $(x 1)^2$, $x^2 6x + 25$, $(x^2 6x + 25)^2$?
- 5. Let

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & -1 \\ 3 & 4 & 1 & 1 \end{bmatrix}$$

Then for A find

- (a) The invariant factors.
- (b) The elementary divisors.
- (c) The minimal polynomial.
- (d) The rational canonical form over the reals.
- 6. Let V be a finite dimensional vector space over the real numbers \mathbf{R} and let W be a subspace of V. Assume that there are vectors $v_1, v_2 \in V$ so that

$$v_1 \notin W$$
 and $v_2 \notin \operatorname{Span}(\{v_1\} \cup W\}.$

There show there is a linear functional $f \in V^*$ so that f(w) = 0 for all $w \in W$, $f(v_1) = 1$ and $f(v_2) = 2$.

- 7. Let V be a finite dimensional vector space over the complex numbers and $P: V \to V$ a linear map so that $P^2 = P$. Show that trace $P = \operatorname{rank} P$
- 8. Let $\mathcal{P}_2 = \text{Span}\{1, x, x^2\}$ be the real polynomials of degree ≤ 2 . Define $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$T(p)(x) = p(x+1)$$

Let \mathcal{P}_2^* be the dual space to \mathcal{P}_2 and let $\Lambda \in \mathcal{P}_2^*$ be the functional

$$\Lambda(p) = p(-3).$$

Then compute $\langle x^2, T^*\Lambda \rangle$.

- 9. A 5×5 real matrix A has minimal polynomial $\min_A(x) = (x-1)^2(x-2)(x-3)$ and trace(A) = 10. What is the rational canonical form for A?
- 10. Let V and W be vector spaces over the field **F** and let $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_n \in W$ so the following tow conditions hold
 - (a) $\text{Span}\{v_1,\ldots,v_n\} = V$ (but we do not assume $\{v_1,\ldots,v_n\}$ is linearly independent),
 - (b) For any scalars $c_1, \ldots, c_n \in \mathbf{F}$

$$\sum_{k=1}^{n} c_k v_k = 0 \qquad \text{implies} \qquad \sum_{k=1}^{n} c_k w_k = 0.$$

Show that there is a unique linear map $T: V \to W$ so that $Tv_k = w_k$ for $1 \le k \le n$.