Mathematics 700 Final
Name:

Show your work to get credit. An answer with no work will not get credit.

1. Define the following:
 (a) eigenvalue.
 (b) eigenvector.
 (c) coordinates of a vector relative to a basis.
 (d) the three elementary row operations.
 (e) the Smith Normal Form of a matrix over a Euclidean domain.
 (f) V is the direct sum of W_1, \ldots, W_k.

2. Let V be a vector space and let $v_1, \ldots, v_n \in V$ be linearly independent vectors. Let $v \in V$ be a vector so that $v \notin \text{Span}\{v_1, \ldots, v_n\}$. Show that $\{v_1, \ldots, v_n, v\}$ is a linearly independent set.

3. Let $M_{k \times k}(\mathbb{R})$ be the vector space of $k \times k$ matrices over the real numbers. $T: M_{3 \times 3}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be linear. Show there is a nonzero symmetric matrix, A, so that $T(A) = 0$. (Recall that A is symmetric iff $A^t = A$ where A^t is the transpose of A.)

4. What is the Jordan canonical form, over the complex numbers, of a matrix that has elementary divisors $x - 1$, $(x - 1)^2$, $x^2 - 6x + 25$, $(x^2 - 6x + 25)^2$?

5. Let
 $$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & -1 \\ 3 & 4 & 1 & 1 \end{bmatrix}$$

 Then for A find
 (a) The invariant factors.
 (b) The elementary divisors.
 (c) The minimal polynomial.
 (d) The rational canonical form over the reals.

6. Let V be a finite dimensional vector space over the real numbers \mathbb{R} and let W be a subspace of V. Assume that there are vectors $v_1, v_2 \in V$ so that
 $$v_1 \notin W \quad \text{and} \quad v_2 \notin \text{Span}(\{v_1\} \cup W).$$

 There show there is a linear functional $f \in V^*$ so that $f(w) = 0$ for all $w \in W$, $f(v_1) = 1$ and $f(v_2) = 2$.

7. Let V be a finite dimensional vector space over the complex numbers and $P: V \to V$ a linear map so that $P^2 = P$. Show that trace $P = \text{rank} P$.

8. Let $\mathcal{P}_2 = \text{Span}\{1, x, x^2\}$ be the real polynomials of degree ≤ 2. Define $T: \mathcal{P}_2 \to \mathcal{P}_2$ by
 $$T(p)(x) = p(x + 1).$$

 Let \mathcal{P}_2^* be the dual space to \mathcal{P}_2 and let $\Lambda \in \mathcal{P}_2^*$ be the functional
 $$\Lambda(p) = p(-3).$$

 Then compute $\langle x^2, T^*\Lambda \rangle$.

9. A 5×5 real matrix A has minimal polynomial $\min_A(x) = (x - 1)^2(x - 2)(x - 3)$ and trace$(A) = 10$. What is the rational canonical form for A?

10. Let V and W be vector spaces over the field \mathbb{F} and let $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_n \in W$ so the following tow conditions hold
 (a) $\text{Span}\{v_1, \ldots, v_n\} = V$ (but we do not assume $\{v_1, \ldots, v_n\}$ is linearly independent),
 (b) For any scalars $c_1, \ldots, c_n \in \mathbb{F}$
 $$\sum_{k=1}^n c_k v_k = 0 \quad \text{implies} \quad \sum_{k=1}^n c_k w_k = 0.$$

 Show that there is a unique linear map $T: V \to W$ so that $Tv_k = w_k$ for $1 \leq k \leq n$.