## Mathematics 700 Final

Name:
Show your work to get credit. An answer with no work will not get credit.

1. Define the following:
(a) eigenvalue.
(b) eigenvector.
(c) coordinates of a vector relative to a basis.
(d) the three elementary row operations.
(e) the Smith Normal Form of a matrix over a Euclidean domain.
(f) $V$ is the direct sum of $W_{1}, \ldots, W_{k}$.
2. Let $V$ be a vector space and let $v_{1}, \ldots, v_{n} \in V$ be linearly independent vectors. Let $v \in V$ be a vector so that $v \notin \operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$. Show that $\left\{v_{1}, \ldots, v_{n}, v\right\}$ is a linearly independent set.
3. Let $M_{k \times k}(\mathbf{R})$ be the vector space of $k \times k$ matrices over the real numbers. $T: M_{3 \times 3}(\mathbf{R}) \rightarrow$ $M_{2 \times 2}(\mathbf{R})$ be linear. Show there is a nonzero symmetric matrix, $A$, so that $T(A)=0$. (Recall that $A$ is symmetric iff $A^{t}=A$ where $A^{t}$ is the transpose of $A$.)
4. What is the Jordan canonical form, over the complex numbers, of a matrix that has elementary divisors $x-1,(x-1)^{2}, x^{2}-6 x+25,\left(x^{2}-6 x+25\right)^{2}$ ?
5. Let

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 2 & 1 & -1 \\
3 & 4 & 1 & 1
\end{array}\right]
$$

Then for $A$ find
(a) The invariant factors.
(b) The elementary divisors.
(c) The minimal polynomial.
(d) The rational canonical form over the reals.
6. Let $V$ be a finite dimensional vector space over the real numbers $\mathbf{R}$ and let $W$ be a subspace of $V$. Assume that there are vectors $v_{1}, v_{2} \in V$ so that

$$
v_{1} \notin W \quad \text { and } \quad v_{2} \notin \operatorname{Span}\left(\left\{v_{1}\right\} \cup W\right\} .
$$

There show there is a linear functional $f \in V^{*}$ so that $f(w)=0$ for all $w \in W, f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=2$.
7. Let $V$ be a finite dimensional vector space over the complex numbers and $P: V \rightarrow V$ a linear map so that $P^{2}=P$. Show that trace $P=\operatorname{rank} P$
8. Let $\mathcal{P}_{2}=\operatorname{Span}\left\{1, x, x^{2}\right\}$ be the real polynomials of degree $\leq 2$. Define $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ by

$$
T(p)(x)=p(x+1) .
$$

Let $\mathcal{P}_{2}^{*}$ be the dual space to $\mathcal{P}_{2}$ and let $\Lambda \in \mathcal{P}_{2}^{*}$ be the functional

$$
\Lambda(p)=p(-3) .
$$

Then compute $\left\langle x^{2}, T^{*} \Lambda\right\rangle$.
9. A $5 \times 5$ real matrix $A$ has minimal polynomial $\min _{A}(x)=(x-1)^{2}(x-2)(x-3)$ and trace $(A)=$ 10. What is the rational canonical form for $A$ ?
10. Let $V$ and $W$ be vector spaces over the field $\mathbf{F}$ and let $v_{1}, \ldots, v_{n} \in V$ and $w_{1}, \ldots, w_{n} \in W$ so the following tow conditions hold
(a) $\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}=V$ (but we do not assume $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent),
(b) For any scalars $c_{1}, \ldots, c_{n} \in \mathbf{F}$

$$
\sum_{k=1}^{n} c_{k} v_{k}=0 \quad \text { implies } \quad \sum_{k=1}^{n} c_{k} w_{k}=0
$$

Show that there is a unique linear map $T: V \rightarrow W$ so that $T v_{k}=w_{k}$ for $1 \leq k \leq n$.

