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1. Fields

1.1. The Definition of a Field. The basic objects of study in linear
algebra are vector spaces over fields and linear maps between vector
spaces and one of our first prices of business is to define all of these
terms. If R is the set of real numbers then the basic example of a
vector space is the set Rn of n-tuples (x1, . . . , xn) where each xi is an
element of R. Actually we will usually write elements of Rn as column
tuples: x1

...
xn


as this is more consistent with doing matrix algebra. I am assuming
all of you have seen some linear algebra at least in the form of doing
matrix computations where the elements of the matrices are real or
complex numbers. The matrix theory part of the class will look very
much like what you have seen (but a large part of what we do will not
evolve matrices) with the difference that the elements of the matrices
are not restricted to being real or complex numbers, but can come from
more general sets called fields. The basic idea is that a field F is a set
with two operations addition (denoted by +) and multiplication
(denoted by · or just concatenation (i.e. a · b = ab)) that satisfy all the
rules of high school algebra. More precisely

Definition 1.1. A field (F,+, ·) is a set F with two binary operations
+ and · so that

1. The operations + and · are both commutative and associative:

x+y = y+x, x+(y+x) = (x+y)+x, xy = yx, x(yz) = (xy)z.

2. Multiplication distributes over addition:

x(y + z) = xy + xz.

3. There is a unique1 element 0 ∈ F so that for all x ∈ F

x+ 0 = 0 + x = x.

This element will be called the zero of F.

1It is not hard to show the assumption of the uniqueness can be dropped. For if
0 and 0′ are elements so that x+ 0 = x and x+ 0′ = x then 0 = 0 + 0′ = 0′+ 0 = 0′

which implies uniqueness.
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4. There is a unique2 element 1 ∈ F so that for all x ∈ F

x · 1 = 1 · x = x.

This element is called the identity of F.
5. 0 6= 1. (This implies F has at least two elements.)
6. For any x ∈ F there is a unique3 −x ∈ F so that

x+ (−x) = 0.

(This element is called the negative of x. And from now on we
write x+ (−y) as x− y.)

7. If 0 6= x ∈ F there is a unique4 element x−1 ∈ F so that

xx−1 = x−1x = 1.

(We will also denote x−1 by 1/x and yx−1 by y/x. The element
x−1 is called the inverse of x.)

We will usually just refer to “the field F” rather than “the field
(F,+, ·)”. For any field F we can view the positive integer n as an
element of F by setting

n := 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

Then for negative n we can set n := −(−n) where −n is defined by the
last equation. That is −4 = −(1 + 1 + 1 + 1). In most respects all of
the basic algebra you know works as usual in a field. As a sample of
this

Proposition 1.2. Let F be a field. Then for all a, b ∈ F

1. a · 0 = 0
2. ab = 0 if and only if a = 0 or b = 0.
3. x2 = a2 implies x = a or x = −a.
4. If ad− bc 6= 0 then

ax+ by = e
cx+ dy = f

implies x =
ed− fb
ad− bc , y =

af − ce
ad− bc

Proof. An exercise you should do if you are not familiar with this circle
of ideas.

1.2. Examples of Fields.

2Again the assumption of uniqueness can be dropped.
3Again the assumption of uniqueness can be dropped: If x+y = 0 and x+z = 0

then y = y + 0 = y + (x+ z) = (x+ y) + z = 0 + z = z.
4And yet again the assumption of uniqueness can be dropped.
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1.2.1. The rational numbers. This is the set of ratios a/b of integers
a, b with b 6= 0. (Note that integers can be either positive or negative.)
This is the most natural example of a field.

1.2.2. The real numbers. For lack of a shorter definition this is the
collection of all decimal numbers R. I am assuming that you know
the basic properties of the real numbers, or are at least learning about
them in Math 703. One advantage of the real numbers over the rational
numbers is that every positive real number has a real numbers as a
square root, while not every rational number has a rational number as
a square root.

1.2.3. The complex numbers. Let i =
√
−1 so that i2 = −1. Then the

complex numbers C is the set of all numbers x+ iy where x and y are
real numbers and addition and multiplication are done in the natural
way. That is

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i

(x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

(The rule for multiplication is what is obtained by expanding the prod-
uct (x1 + y1i)(x2 + y2i), using that i2 = −1 and grouping the terms
with an i together.) What is not quite obvious if you have not seen it
before is that if x+ iy is a nonzero complex number that it has an in-
verse. To get the inverse of x+ iy we use the trick of “rationalizing the
denominator” by multiplying by x− iy (call the complex conjugate
of x+ iy). That is

1

x+ iy
=

x− iy
(x+ iy)(x− iy)

=
x− iy
x2 + y2

=
x

x2 + y2
+ i

−y
x2 + y2

.

Note that x+ iy 6= 0 means that x 6= 0 or y 6= 0 so that x2 +y2 > 0 and
therefore the above calculation works for any nonzero complex number.
The importance of the complex numbers is that not only does every
complex number z have a square root that is also a complex number,
but if p(z) = anz

n + an−1z
n−1 + · · ·a0 is a polynomial with complex

coefficients and an 6= 0 then the equation p(z) = 0 will always have at
least one complex solution. This fact is referred to as the fundamental
theorem of algebra .

1.3. Quadratic number fields. This is not anything that we will use
other than in passing, but it is interesting to see examples that are not
as familiar as the ones above. Let n be an integer (either positive or
negative) that does not have a rational square root. That is x2 = n
does not have a solution with x = a/b a rational number. This implies



4

that if a and b are rational numbers then a2 − b2n 6= 0 unless both a
and b are zero. Let F := {a + b

√
n : a, b ∈ Q}. Multiplication and

addition are done as usual (that is this just viewing them as complex
numbers.) The only thing that might keep F from being a field is that
the inverse of a member of F might not be in F. Again rationalizing
the denominator saves the day:

1

a+ b
√
n

=
a− b√n

(a+ b
√
n)(a− b√n)

=
a− b√n
a2 − b2n

=
a

a2 − b2n
+

−b
a2 − b2n

√
n

and as remarked above a2− b2n 6= 0 unless a+ b
√
n = 0. The numbers

a/(a2 − b2n) and −b/(a2 − b2n) are in Q so 1/(a+ b
√
n) is in F.

1.4. The field of rational functions. Let F be any field. Then
we will use the notation F[x] for the set of all polynomials p(x) =
anx

n + · · ·a0 with coefficients ak ∈ F. Denote by F(x) the set of
rational functions p(x)/q(x) where p(x), q(x) ∈ F[x] are polynomial
and q(x) is not the zero polynomial. (It is standard to denote the
set polynomials F[x] with the square bracket and the field of rational
functions F(x) with the round bracket.) If addition and multiplication
are defined by the usual rules i.e.

p1(x)

q1(x)
+
p2(x)

q2(x)
=
p1(x)q2(x) + p2(x)q1(x)

q1(x)q2(x)
,

p1(x)

q1(x)
· p2(x)

q2(x)
=
p1(x)p2(x)

q1(x)q2(x)

this becomes a field.

1.5. Finite fields. These will not come up often in this class, but you
should be aware they exist. Moreover in certain parts of mathematics
(number theory, combinatorics, finite group theory) they quite impor-
tant. Here are the basic examples. Let p be a prime number and let
Z/p be the integers reduced modulo p. That is we consider two integers
n and m to be “equal” (really congruent modulo p) if and only if they
have the same remainder when divided by p in which case we write
m ≡ n mod p. Therefore m ≡ n mod p if and only if m− n is evenly
divisible by p. It is easy to check that

m1 ≡ n1 mod p and m2 ≡ n2 mod p implies

m1 +m2 ≡ n1 + n2 mod p and m1m2 ≡ n1n2 mod p.
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Then Z/p is the set of congruence classes modulo p. It only takes
a little work to see that with the “obvious” choice of addition and
multiplication that Z/p satisfies all the conditions of a fields except
the existence of inverses of elements n 6≡ 0 mod p. (In fact this much
is true even when p in not prime, finding inverses is the only place
where p being prime is used.) Using that p is prime it is possible to
show that if m 6≡ 0 mod p that there is a m so that mn ≡ 0 mod p.
(This is not all that hard and you might want to try to show it your self
as an exercise.) This is exactly what is needed to show that inverses
exist. To make this more concrete we work out the case of p = 5 in
detail. The possible remainders when a number is divided by 5 are 0,
1, 2, 3, 4. Thus we can use for the elements of Z/5 the set {0, 1, 2, 3, 4}.
Addition works like this. 2 + 4 = 1 in Z/5 as the remainder of 4 + 2
when divided by 5 is 1. Likewise 2 · 4 = 3 in Z/5 as the remainder of
2 · 4 when divided by 5 is 3. Here are the addition and multiplication
tables for Z/5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

and in this case one can see directly that each element has an inverse.
Note that in this field we have 5 = 0 which seems rather jarring at
first. Finally I remark that there are lots of finite fields that are not
of the form Z/p for any prime p. To give an easy example of this note
that my looking at the multiplication table for Z/5 we see that 2 has
no square root in Z/5. Therefore we can form a quadratic number
field F := {a + b

√
2 : a, b ∈ Z/p} just as we did over the the rational

numbers above. Then F is also a finite field and it has 25 elements and
is not equal to Z/25.


