LINEAR ALGEBRA QUESTIONS FROM THE ADMISSION TO CANDIDACY EXAM

The following is a more or less complete list of the linear algebra questions that have appeared on the admission to candidacy exam for the last fifteen years. Some questions have been reworded a little.

Jandary 1984

1. Let V be a finite-dimensional vector space and let T be a linear operator on V. Suppose that T commutes with every diagonalizable linear operator on V. Prove that T is a scalar multiple of the identity operator.
2. Let V and W be vector spaces and let T be a linear operator from V into W. Suppose that V is finite-dimensional. $\operatorname{Prove} \operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim} V$.
3. Let A and B be $n \times n$ matrices over a field \mathbf{F}.
(a) Prove that if A or B is nonsingular, then $A B$ is similar to $B A$.
(b) Show that there exist matrices A and B so that $A B$ is not similar to $B A$.
(c) What can you deduce about the eigenvalues of $A B$ and $B A$? Prove your answer.
4. Let $A=\left(\begin{array}{ll}D & E \\ F & G\end{array}\right)$, where D and G are $n \times n$ matrices. If $D F=F D$ prove that $\operatorname{det} A=$ $\operatorname{det}(D G-F E)$.
5. If \mathbf{F} is a field, prove that every ideal in $\mathbf{F}[x]$ is principal.

August 1984

1. Let V be a finite dimensional vector space. Can V have three distinct proper subspaces W_{0}, W_{1} and W_{2} such that $W_{0} \subseteq W_{1}, W_{0}+W_{2}=V$, and $W_{1} \cap W_{2}=\{0\}$?
2. Let n be a positive integer. Define
$G=\{A: A$ is an $n \times n$ matrix with only integer entries and $\operatorname{det} A \in\{-1,+1\}\}$,
$H=\left\{A: A\right.$ is an invertible $n \times n$ matrix and both A and A^{-1} have only integer entries $\}$.
Prove $G=H$.
3. Let V be the vector space over \mathbf{R} of all $n \times n$ matrices with entries from \mathbf{R}.
(a) Prove that $\left\{I, A, A^{2}, \ldots, A^{n}\right\}$ is linearly dependent for all $A \in V$.
(b) Let $A \in V$. Prove that A is invertible if and only if I belongs to the span of $\left\{A, A^{2}, \ldots, A^{n}\right\}$.
4. Is every $n \times n$ matrix over the field of complex numbers similar to a matrix of the form $D+N$, where D is a diagonal matrix, $N^{n-1}=0$, and $D N=N D$? Why?

Jandary 1985

1. (a) Let V and W be vector spaces and let T be a linear operator from V into W. Suppose that V is finite-dimensional. $\operatorname{Prove} \operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim} V$.
(b) Let $T \in L(V, V)$, where V is a finite dimensional vector space. (For a linear operator S denote by $\mathcal{N}(S)$ the null space and by $\mathcal{R}(S)$ the range of S.)
(i) Prove there is a least natural number k such that $\mathcal{N}\left(T^{k}\right)=\mathcal{N}\left(T^{k+1}\right)=\mathcal{N}\left(T^{k+2}\right) \cdots$ Use this k in the rest of this problem.
(ii) Prove that $\mathcal{R}\left(T^{k}\right)=\mathcal{R}\left(T^{k+1}\right)=\mathcal{R}\left(T^{k+2}\right) \cdots$
(iii) Prove that $\mathcal{N}\left(T^{k}\right) \cap \mathcal{R}\left(T^{k}\right)=\{0\}$.
(iv) Prove that for each $\alpha \in V$ there is exactly one vector in $\alpha_{1} \in \mathcal{N}\left(T^{k}\right)$ and exactly one vector $\alpha_{2} \in \mathcal{R}\left(T^{k}\right)$ such that $\alpha=\alpha_{1}+\alpha_{2}$.
2. Let \mathbf{F} be a field of characteristic 0 and let

$$
W=\left\{A=\left[a_{i j}\right] \in \mathbf{F}^{n \times n}: \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}=0\right\} .
$$

For $i, j=1, \ldots, n$ with $i \neq j$, let $E_{i j}$ be the $n \times n$ matrix with (i, j)-th entry 1 and all the remaining entries 0 . For $i=2, \ldots, n$ let E_{i} be the $n \times n$ matrix with $(1,1)$ entry $-1,(i, i)$-th entry +1 , and all remaining entries 0 . Let

$$
S=\left\{E_{i j}: i, j=1, \ldots, n \text { and } i \neq j\right\} \cup\left\{E_{i}: i=2, \ldots, n\right\}
$$

[Note: You can assume, without proof, that S is a linearly independent subset of $\mathbf{F}^{n \times n}$.]
(a) Prove that W is a subspace of $\mathbf{F}^{n \times n}$ and that $W=\operatorname{span}(S)$. What is the dimension of W ?
(b) Suppose that f is a linear functional on $\mathbf{F}^{n \times n}$ such that
(i) $f(A B)=f(B A)$, for all $A, B \in \mathbf{F}^{n \times n}$.
(ii) $f(I)=n$, where I is the identity matrix in $\mathbf{F}^{n \times n}$.

Prove that $f(A)=\operatorname{tr}(A)$ for all $A \in \mathbf{F}^{n \times n}$.

August 1985

1. Let V be a vector space over C. Suppose that f and g are linear functionals on V such that the functional

$$
h(\alpha)=f(\alpha) g(\alpha) \quad \text { for all } \quad \alpha \in V
$$

is linear. Show that either $f=0$ or $g=0$.
2. Let C be a 2×2 matrix over a field \mathbf{F}. Prove: There exists matrices $C=A B-B A$ if and only if $\operatorname{tr}(C)=0$.
3. Prove that if A and B are $n \times n$ matrices from \mathbf{C} and $A B=B A$, then A and B have a common eigenvector.

Jandary 1986

1. Let \mathbf{F} be a field and let V be a finite dimensional vector space over \mathbf{F}. Let $T \in L(V, V)$. If c is an eigenvalue of T, then prove there is a nonzero linear functional f in $L(V, \mathbf{F})$ such that $T^{*} f=c f$. (Recall that $T^{*} f=f T$ by definition.)
2. Let \mathbf{F} be a field, $n \geq 2$ be an integer, and let V be the vector space of $n \times n$ matrices over \mathbf{F}. Let A be a fixed element of V and let $T \in L(V, V)$ be defined by $T(B)=A B$.
(a) Prove that T and A have the same minimal polynomial.
(b) If A is diagonalizable, prove, or disprove by counterexample, that T is diagonalizable.
(c) Do A and T have the same characteristic polynomial? Why or why not?
3. Let M and N be 6×6 matrices over \mathbf{C}, both having minimal polynomial x^{3}.
(a) Prove that M and N are similar if and only if they have the same rank.
(b) Give a counterexample to show that the statement is false if 6 is replaced by 7 .

August 1986

1. Give an example of two 4×4 matrices that are not similar but that have the same minimal polynomial.
2. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a nonzero vector in the real n-dimensional space \mathbf{R}^{n} and let P be the hyperplane

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}: \sum_{i=1}^{n} a_{i} x_{i}=0\right\}
$$

Find the matrix that gives the reflection across P.

$$
\text { JANUARY } 1987
$$

1. Let V and W be finite-dimensional vector spaces and let $T: V \rightarrow W$ be a linear transformation. Prove that that exists a basis \mathcal{A} of V and a basis \mathcal{B} of W so that the matrix $[T]_{\mathcal{A}, B}$ has the block form $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$.
2. Let V be a finite-dimensional vector space and let T be a diagonalizable linear operator on V. Prove that if W is a T-invariant subspace then the restriction of T to W is also diagonalizable.
3. Let T be a linear operator on a finite-dimensional vector. Show that if T has no cyclic vector then, then there exists an operator U on V that commutes with T but is not a polynomial in T.
4. Exhibit two real matrices with no real eigenvalues which have the same characteristic polynomial and the same minimal polynomial but are not similar.
5. Let V be a vector space, not necessarily finite-dimensional. Can V have three distinct proper subspaces A, B, and C, such that $A \subset B, A+C=V$, and $B \cap C=\{0\}$?
6. Compute the minimal and characteristic polynomials of the following matrix. Is it diagonalizable?

$$
\left[\begin{array}{cccc}
5 & -2 & 0 & 0 \\
6 & -2 & 0 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

August 1988

1. (a) Prove that if A and B are linear transformations on an n-dimensional vector space with $A B=0$, then $r(A)+r(B) \leq n$ where $r(\cdot)$ denotes rank.
(b) For each linear transformation A on an n-dimensional vector space, prove that there exists a linear transformation B such that $A B=0$ and $r(A)+r(B)=n$.
2. (a) Prove that if A is a linear transformation such that $A^{2}(I-A)=A(I-A)^{2}=0$, then A is a projection.
(b) Find a non-zero linear transformation so that $A^{2}(I-A)=0$ but A is not a projection.
3. If S is an m-dimensional vector space of an n-dimensional vector space V, prove that S°, the annilihilator of S, is an $(n-m)$-dimensional subspace of V^{*}.
4. Let A be the 4×4 real matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
-2 & -2 & 2 & 1 \\
1 & 1 & -1 & 0
\end{array}\right]
$$

(a) Determine the rational canonical form of A.
(b) Determine the Jordan canonical form of A.

$$
\text { Jandary } 1989
$$

1. Let T be the linear operator on \mathbf{R}^{3} which is represented by

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
1 & 0 & 0
\end{array}\right]
$$

in the standard basis. Find matrices B and C which represent respectively, in the standard basis, a diagonalizable linear operator D and a nilpotent linear operator N such that $T=D+N$ and $D N=N D$.
2. Suppose T is a linear operator on \mathbf{R}^{5} represented in some basis by a diagonal matrix with entries $-1,-1,5,5,5$ on the main diagonal.
(a) Explain why T can not have a cyclic vector.
(b) Find k and the invariant factors $p_{i}=p_{\alpha_{i}}$ in the cyclic decomposition $\mathbf{R}^{5}=\bigoplus_{i=1}^{k} Z\left(\alpha_{i} ; T\right)$.
(c) Write the rational canonical form for T.
3. Suppose that V in an n-dimensional vector space and T is a linear map on V of rank 1 . Prove that T is nilpotent or diagonalizable.

August 1989

1. Let M denote an $m \times n$ matrix with entries in a field. Prove that
the maximum number of linearly independent rows of M
$=$ the maximum number of linearly independent columns of M
(Do not assume that $\operatorname{rank} M=\operatorname{rank} M^{t}$.)
2. Prove the Cayley-Hamilton Theorem, using only basic properties of determinants.
3. Let V be a finite-dimensional vector space. Prove there a linear operator T on V is invertible if and only if the constant term in the minimal polynomial for T is non-zero.
4. (a) Let $M=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]$. Find a matrix T (with entries in \mathbf{C}) such that $T^{-1} M T$ is diagonal, or prove that such a matrix does not exist.
(b) Find a matrix whose minimal polynomial is $x^{2}(x-1)^{2}$, whose characteristic polynomial is $x^{4}(x-1)^{3}$ and whose rank is 4 .
5. Suppose A and B are linear operators on the same finite-dimensional vector space V. Prove that $A B$ and $B A$ have the same characteristic values.
6. Let M denote an $n \times n$ matrix with entries in a field \mathbf{F}. Prove that there is an $n \times n$ matrix B with entries in \mathbf{F} so that $\operatorname{det}(M+t B) \neq 0$ for every non-zero $t \in \mathbf{F}$.

January 1990

1. Let W_{1} and W_{2} be subspaces of the finite dimensional vector space V. Record and prove a formula which relates $\operatorname{dim} W_{1}, \operatorname{dim} W_{2}, \operatorname{dim}\left(W_{1}+W_{2}\right), \operatorname{dim}\left(W_{1} \cap W_{2}\right)$.
2. Let M be a symmetric $n \times n$ matrix with real number entries. Prove that there is an $n \times n$ matrix N with real entries such that $N^{3}=M$.
3. TRUE OR FALSE. (If the statement is true, then prove it. If the statement is false, then give a counterexample.) If two nilpotent matrices have the same rank, the same minimal polynomial and the same characteristic polynomial, then they are similar.

August 1990

1. Suppose that $T: V \rightarrow W$ is a injective linear transformation over a field \mathbf{F}. Prove that $T^{*}:$ $W^{*} \rightarrow V^{*}$ is surjective. (Recall that $V^{*}=L(V, \mathbf{F})$ is the vector space of linear transformations from V to \mathbf{F}.)
2. If M is the $n \times n$ matrix

$$
M=\left[\begin{array}{ccccc}
x & a & a & \cdots & a \\
a & x & a & \cdots & a \\
a & a & x & \cdots & a \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a & a & a & \cdots & x
\end{array}\right]
$$

then prove that $\operatorname{det} M=[x+(n-1) a](x-a)^{n-1}$.
3. Suppose that T is a linear operator on a finite dimensional vector space V over a field \mathbf{F}. Prove that T has a cyclic vector if and only if

$$
\{U \in L(V, V): T U=U T\}=\{f(T): f \in \mathbf{F}[x]\} .
$$

4. Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ be given by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{4}, x_{1},-2 x_{2}-x_{3}-4 x_{4}, 4 x_{2}+x_{3}\right)
$$

(a) Compute the characteristic polynomial of T.
(b) Compute the minimal polynomial of T.
(c) The vector space \mathbf{R}^{4} is the direct sum of two proper T-invariant subspaces. Exhibit a basis for one of these subspaces.

$$
\text { Jandary } 1991
$$

1. Let V, W, and Z be finite dimensional vector spaces over the field \mathbf{F} and let $f: V \rightarrow W$ and $g: W \rightarrow Z$ be linear transformations. Prove that

$$
\operatorname{nullity}(g \circ f) \leq \operatorname{nullity}(f)+\operatorname{nullity}(g)
$$

2. Prove that

$$
\operatorname{det}\left[\begin{array}{ccc}
A & 0 & 0 \\
B & C & D \\
0 & 0 & E
\end{array}\right]=\operatorname{det} A \operatorname{det} C \operatorname{det} E
$$

where A, B, C, D and E are all square matrices.
3. Let A and B be $n \times n$ matrices with entries on the field \mathbf{F} such that $A^{n-1} \neq 0, B^{n-1} \neq 0$, and $A^{n}=B^{n}=0$. Prove that A and B are similar, or show, with a counterexample, that A and B are not necessarily similar.

August 1991

1. Let A and B be $n \times n$ matrices with entries from \mathbf{R}. Suppose that A and B are similar over \mathbf{C}. Prove that they are similar over \mathbf{R}.
2. Let A be an $n \times n$ with entries from the field \mathbf{F}. Suppose that $A^{2}=A$. Prove that the rank of A is equal to the trace of A.
3. TRUE OR FALSE. (If the statement is true, then prove it. If the statement is false, then give a counterexample.) Let W be a vector space over a field \mathbf{F} and let $\theta: V \rightarrow V^{\prime}$ be a fixed surjective transformation. If $g: W \rightarrow V^{\prime}$ is a linear transformation then there is linear transformation $h: W \rightarrow V$ such that $\theta \circ h=g$.

Jandary 1992

1. Let V be a finite dimensional vector space and $A \in L(V, V)$.
(a) Prove that there exists and integer k such that $\operatorname{ker} A^{k}=\operatorname{ker} A^{k+1}=\cdots$
(b) Prove that there exists an integer k such that $V=\operatorname{ker} A^{k} \oplus$ image A^{k}.
2. Let V be the vector space of $n \times n$ matrices over a field \mathbf{F}, and let $T: V \rightarrow V^{*}$ be defined by $T(A)(B)=\operatorname{tr}\left(A^{t} B\right)$. Prove that T is an isomorphism.
3. Let A be an $n \times n$ matrix and $A^{k}=0$ for some k. Show that $\operatorname{det}(A+I)=1$.
4. Let V be a finite dimensional vector sauce over a field \mathbf{F}, and T a linear operator on V. Suppose the minimal and characteristic polynomials of of T are the same power of an irreducible polynomial $p(x)$. Show that no non-trivial T-invariant subspace of V has a T-invariant complement.

August 1992

1. Let V be the vector space of all $n \times n$ matrices over a field \mathbf{F}, and let B be a fixed $n \times n$ matrix that is not of the form $c I$. Define a linear operator T on V by $T(A)=A B-B A$. Exhibit a not-zero element in the kernel of the transpose of T.
2. Let V be a finite dimensional vector space over a field \mathbf{F} and suppose that S and T are triangulable operators on V. If $S T=T S$ prove that S and T have an eigenvector in common.
3. Let A be an $n \times n$ matrix over C. If trace $A^{i}=0$ for all $i>0$, prove that A is nilpotent.

Jandary 1993

1. Let V be a finite dimensional vector space over a field \mathbf{F}, and let T be a linear operator on V so that $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$. Prove that V is the direct sum of the range of T and the null space of T.
2. Let V be the vector space of all $n \times n$ matrices over a field \mathbf{F}, and suppose that A is in V. Define $T: V \rightarrow V$ by $T(A B)=A B$. Prove that A and T have the same characteristic values.
3. Let A and B be $n \times n$ matrices over the complex numbers.
(a) Show that $A B$ and $B A$ have the same characteristic values.
(b) Are $A B$ and $B A$ similar matrices?
4. Let V be a finite dimensional vector space over a field of characteristic 0 , and T be a linear operator on V so that $\operatorname{tr}\left(T^{k}\right)=0$ for all $k \geq 1$, where $\operatorname{tr}(\cdot)$ denotes the trace function. Prove that T is a nilpotent linear map.
5. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix over the field of complex numbers such that

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right| \quad \text { for } \quad i=1, \ldots, n .
$$

Then show that $\operatorname{det} A \neq 0$. (det denotes the determinant.)
6 . Let A be an $n \times n$ matrix, and let $\operatorname{adj}(A)$ denote the $\operatorname{adjoint}$ of A. Prove the $\operatorname{rank} \operatorname{of} \operatorname{adj}(A)$ is either 0,1 , or n.

August 1993

1. Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
3 & 1 & 3 \\
-3 & -3 & -5
\end{array}\right]
$$

(a) Determine the rational canonical form of A.
(b) Determine the Jordan canonical form of A.
2. If

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

then prove that there does not exist a matrix with $N^{2}=A$.
3. Let A be a real $n \times n$ matrix which is symmetric, i.e. $A^{t}=A$. Prove that A is diagonalizable.
4. Give an example of two nilpotent matrices A and B such that
(a) A is not similar to B,
(b) A and B have the same characteristic polynomial,
(c) A and B have the same minimal polynomial, and
(d) A and B have the same rank.

Jandary 1994

1. Let A be an $n \times n$ matrix over a field \mathbf{F}. Show that \mathbf{F}^{n} is the direct sum of the null space and the range of A if and only if A and A^{2} have the same rank.
2. Let A and B be $n \times n$ matrices over a field \mathbf{F}.
(a) Show $A B$ and $B A$ have the same eigenvalues.
(b) Is $A B$ similar to $B A$? (Justify your answer).
3. Given an exact sequence of finite-dimensional vector spaces

$$
0 \xrightarrow{T_{0}} V_{1} \xrightarrow{T_{1}} V_{2} \xrightarrow{T_{2}} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_{n} \xrightarrow{T_{n}} 0
$$

that is the range of T_{i} is equal to the null space of T_{i+1}, for all i. What is the value of $\sum_{i+1}^{n}(-1)^{i} \operatorname{dim}\left(V_{i}\right) ?$ (Justify your answer).
4. Let \mathbf{F} be a field with q elements and V be a n-dimensional vector space over \mathbf{F}.
(a) Find the number of elements in V.
(b) Find the number of bases of V.
(c) Find the number of invertible linear operators on V.
5. Let A and B be $n \times n$ matrices over a field \mathbf{F}. Suppose that A and B have the same trace and the same minimal polynomial of degree $n-1$. Is A similar to B ? (Justify your answer.)
6. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix with $a_{i j}=1$ for all i and j. Find its characteristic and minimal polynomial.

August 1994

1. Give an example of a matrix with real entries whose characteristic polynomial is $x^{5}-x^{4}+x^{2}-$ $3 x+1$.
2. TRUE or FALSE. (If true prove it. If false give a counterexample.) Let A and B be $n \times n$ matrices with minimal polynomial x^{4}. If rank $A=\operatorname{rank} B$, and $\operatorname{rank} A^{2}=\operatorname{rank} B^{2}$, then A and B are similar.
3. Suppose that T is a linear operator on a finite-dimensional vector space V over a field \mathbf{F}. Prove that the characteristic polynomial of T is equal to the minimal polynomial of T if and only if

$$
\begin{gathered}
\{U \in L(V, V): T U=U T\}=\{f(T): f \in \mathbf{F}[x]\} . \\
\text { JanUARY } 1995
\end{gathered}
$$

1. (a) Prove that if A and B are 3×3 matrices over a field \mathbf{F}, a necessary and sufficient condition that A and B be similar over \mathbf{F} is that that have the same characteristic and the same minimal polynomial.
(b) Give an example to show this is not true for 4×4 matrices.
2. Let V be the vector space of $n \times n$ matrices over a field. Assume that f is a linear functional on V so that $f(A B)=f(B A)$ for all $A, B \in V$, and $f(I)=n$. Prove that f is the trace functional.
3. Suppose that N is a 4×4 nilpotent matrix over \mathbf{F} with minimal polynomial x^{2}. What are the possible rational canonical forms for n ?
4. Let A and B be $n \times n$ matrices over a field \mathbf{F}. Prove that $A B$ and $B A$ have the same characteristic polynomial.
5. Suppose that \mathbf{V} is an n-dimensional vector space over \mathbf{F}, and T is a linear operator on \mathbf{V} which has n distinct characteristic values. Prove that if S is a linear operator on \mathbf{V} that commutes with T, then S is a polynomial in T.

August 1995

1. Let A and B be $n \times n$ matrices over a field \mathbf{F}. Show that $A B$ and $B A$ have the same characteristic values in \mathbf{F}.
2. Let P and Q be real $n \times n$ matrices so that $P+Q=I$ and $\operatorname{rank}(P)+\operatorname{rank}(Q)=n$. Prove that P and Q are projections. (Hint: Show that if $P x=Q y$ for some vectors x and y, then $P x=Q y=0$.)
3. Suppose that A is an $n \times n$ real, invertible matrix. Show that A^{-1} can be expressed as a polynomial in A with real coefficients and with degree at most $n-1$.
4. Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Determine the rational canonical form and the Jordan canonical form of A.
5. (a) Give an example of two 4×4 nilpotent matrices which have the same minimal polynomial but are not similar.
(b) Explain why 4 is the smallest value that can be chosen for the example in part (a), i.e. if $n \leq 3$, any two nilpotent matrices with the same minimal polynomial are similar.

Jandary 1996

1. Let \mathcal{P}_{3} be the vector space of all with coefficients from \mathbf{R} and of degree at most 3. Define a linear $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ by $(T f)(x)=f(2 x-6)$. Is T diagonalizable? Explain why.
2 . Let R be the ring of $n \times n$ matrices over the real numbers. Show that R does not have any two sided ideals other than R and $\{0\}$.
2. Let V be a finite dimensional vector space and $A: V \rightarrow V$ a linear map. Suppose that $V=U \oplus W$ is a direct sum decomposition of V into subspaces invariant under A. Let V^{*} be the dual space of V and let $A^{t}: V^{*} \rightarrow V^{*}$ be the transpose of A.
(a) Show that V^{*} has a direct sum decomposition $V^{*}=X \oplus Y$ so that $\operatorname{dim} X=\operatorname{dim} U$ and $\operatorname{dim} Y=\operatorname{dim} W$ and both X and Y are invariant under A^{t}.
(b) Using part (a), or otherwise, prove that A and A^{t} are similar.

August 1996

1. Consider a linear operator on the space of 3×3 matrices defined by $S(A)=A-A^{t}$ where A^{t} is the transpose of A. Compute the rank of A.
2. Let V and W be finite dimensional vector spaces over a field \mathbb{F}, let V^{*} and W^{*} be the dual spaces to V and W and let $T: V \rightarrow W$ be a linear map.
(a) Give the definition of V^{*} and show $\operatorname{dim} V=\operatorname{dim} V^{*}$.
(b) If $S \subset V$ define the annihilator S° of S in V^{*} and prove it is a subspace of V^{*}.
(c) Define the adjoint map $T^{*}: W^{*} \rightarrow V^{*}$.
(d) Show that $\operatorname{ker}(T)^{\circ}=\operatorname{Image} T^{*}$
3. Suppose that A is a 3×3 real orthogonal matrix, i.e., $A^{t}=A^{-1}$, with determinant -1 . Prove that -1 is an eigenvalue of for A.

Jandary 1997

1. Let $M_{n \times n}$ be the vector space of all $n \times n$ real matrices.
(a) Show that every $A \in M_{n \times n}$ is similar to its transpose.
(b) Is there a single invertible $S \in M_{n \times n}$ so that $S A S^{-1}=A^{t}$ for all $A \in M_{n \times n}$?
2. Let A be a 3×3 matrix over the real numbers and assume that $f(A)=0$ where $f(x)=$ $x^{2}(x-1)^{2}(x-2)$. Then give a complete list of the possible values of $\operatorname{det}(A)$.
3. Show that for every polynomial $p(x) \in \mathbb{C}[x]$ of degree n there is a polynomial $q(x)$ of degree $\leq n$ so that

$$
(x+1)^{n} f\left(\frac{x-1}{x+1}\right)=p(x) .
$$

Hint: Let \mathcal{P}_{n} be the vector space of polynomials of degree $\leq n$ and for each $f(x) \in \mathcal{P}_{n}$ define $(S f)(x):=(x+1)^{n} f((x-1) /(x+1))$. Show that S maps $\mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ and is linear. What is the null space of S ?

August 1997

1. Let V be a finite dimensional vector space and $L \in \operatorname{Hom}(V, V)$ such that L and L^{2} have the same nullity. Show that $V=\operatorname{ker} L \oplus \operatorname{Im} L$.
2. Let A be an $n \times n$ matrix and $n>1$. Show that $\operatorname{adj}(\operatorname{adj}(A))=\operatorname{det}\left(A^{n-2}\right) A$.
3. Let $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & -6 & 6\end{array}\right]$. Cmpute the rational cononical form and the Jordon canonical form of A.
4. Let A be an $n \times n$ real matrix such that $A^{3}=A$. Show that the rank of A is greater than or equal to the trace of A.
5 . Let $A=\left[a_{i j}\right]$ be a real $n \times n$ matrix with positive diagonal entries such that

$$
a_{i i} a_{j j}>\sum_{k \neq i}\left|a_{i k}\right| \sum_{l \neq j}\left|a_{i l}\right|
$$

for all i, j. Show that $\operatorname{det}(A)>0$. Hint: Show first that $\operatorname{det}(A) \neq 0$.
January 1998

1. For any nonzero scalar a, show that there are no real $n \times n$ matrices A and B such that $A B-B A=$ $a I$.
2. Let V be a vector space over the rational numbers \mathbb{Q} with $\operatorname{dim} V=6$ and let T be a nonzero linear operator on V.
(a) If $f(T)=0$ for $f(x)=x^{6}+36 x^{4}-6 x^{2}+12$, determine the rational canonical form for T (and prove your result is correct).
(b) Is T an automorphism of V ? If so describe T^{-1}; if not describe why not.
3. Suppose that A and B are diagonalizable matrices over a field \mathbb{F}. Prove that they are simultaneously diagonalizable, that is there there exists an invertible matrix P such that $P A P^{-1}$ and $P B P^{-1}$ are both diagonal, if and only if $A B=B A$.

August 1998

1. V be a finite dimensional vector space and let W be a subspace of V. Let $\mathcal{L}(V)$ the set of linear operators on V and set $Z=\{T \in \mathcal{L}(V): W \subseteq \operatorname{ker}(T)\}$. Prove that Z is a subspace of $\mathcal{L}(V)$ and compute its dimension in terms of the the dimensions of V and W.
2. Let V be a finite dimensional vector space and $\mathcal{L}(V)$ the set of linear operators on V. Suppose $T \in \mathcal{L}(V)$. Suppose that

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}
$$

where V_{i} is T invariant for each $i \in\{1, \ldots, k\}$. Let $m(x)$ be the minimal polynomial of T and $m_{i}(x)$ the minimal polynomial of T restricted to V_{i}, for each $i \in\{1, \ldots, k\}$. How is $m(x)$ related to the set $\left\{m_{1}(x), \ldots, m_{r}(x)\right\}$.
3. Let V be a finite dimensional vector space and $\mathcal{L}(V)$ the set of linear operators on V. Let $S, T \in$ $\mathcal{L}(V)$ so that $S+T=I$ and dim range $S+\operatorname{dim}$ range $T=\operatorname{dim} V$. Prove that $V=$ range $S \oplus$ range T and that $S T=T S=0$.
4. Let A and B be be $n \times n$ matrices. Suppose that A^{k} and B^{k} have the same minimal polynomials and the same characteristic polynomials for $k=1,2$, and 3 . Must A and B be similar? If so prove it. If not, give a counterexample.

January 1999

1. Let V be a finite dimensional vector space and let $T: V \rightarrow V$ be a linear transformation which is not zero and is not an isomorphism. Prove there is exists a linear transformation S so that $S T=0$, but $T S \neq 0$.
2. Let T be a linear operator on the finite dimensional vector space V. Prove that if $T^{2}=T$, then $V=\operatorname{ker} T \oplus$ image T.
3. Let S and T be 5×5 nilpotent matrices with $\operatorname{rank} S=\operatorname{rank} T$ and $\operatorname{rank} S^{2}=\operatorname{rank} T^{2}$. Are S and T necessarily similar? Prove or give a counterexample.
4. Let A and B be $n \times n$ matrices over \mathbb{C} with $A B=B A$. Prove A and B have a common eigenvector. Do A and B have a common eigenvalue.

August 1999

1. Make a list, as long as possible, of square matrices over \mathbb{C} such that
(a) Each matrix on the list has characteristic polynomial $(x-2)^{4}(x-3)^{4}$,
(b) Each matrix on the list has minimal polynomial $(x-2)^{2}(x-3)^{2}$, and,
(c) No matrix on the list is similar to a matrix occurring elsewhere on the list.

Demonstrate that your list has all the desired attributes.
2. Let A and B be nilpotent matrices over \mathbb{C}.
(a) Prove that if $A B=B A$, then $A+B$ is nilpotent.
(b) Prove that $I-A$ is invertible.
3. Let V be a finite dimensional vector space. Recall that for $X \subseteq V$ the set X° is defined to be $\{f \mid f$ is a linear functional of V and $f(x)=0$ for all $x \in X$. Let U and W be subspaces of V. Prove the following
(a) $(U+W)^{\circ}=U^{\circ} \cap W^{\circ}$.
(b) $U^{\circ}+W^{\circ}=(U \cap W)^{\circ}$.

