Some Notes to Supplement the Lectures in
Mathematics 700

1 The Uniqueness of the Row Reduced Echelon Form

Let A and B be two matrices of the same size and assume that they are row equivalent. Then
there are elementary matrices Fi, ..., Fy so that B = E FEy_1---E1--- ExA. Then as all the
matrices F1, ..., F} are invertible so is the product P := EyE)_1--- Ey. Therefore if A and B
are row equivalent matrices there is an invertible matrix P so that B = PA. If we write B~A
to mean there is an invertible matrix P so that B = PA. Then this is an equivalence relation.
(For letting P = I shows A~A. If B = PA, then A = P7!B so A~B implies B~A. If B= PA
and C' = @B then C' = QPA so A~B and B~C implies A~B. Of course we know from class
work that this equivalence relation in just the same as row equivalence, but I don’t want to
use this fact in the following proof as then we can use the argument here to give an new proof
of this. A virtue of the proof here is that it gives an example of how to use block matrices to
prove things. It has several vices, such as being more computational than conceptual.

Theorem 1.1 If R and R’ are row reduced echelon matrices of the same size so that for some
invertible matrix P there holds R = PR, then R = R'. In particular if R and R' are row
equivalent then they are equal.

PROOF: Assume that R and R’ are both m x n. We will use induction and assume that the
result holds for row reduced echelon matrices with fewer than m rows and show that it holds
when they have m rows. We write

Ry R} pun 0 Pim
R=| : |, R=| |, P=| 1 -

where Ry, ..., R, are the rows of R and R},..., R], are the rows of R. Then R’ = PR implies
R} =37, pijR;. That is the rows of R’ are linear combinations of the rows of R. By symmetry
of the equivalence relation =~ this also implies that the rows of R are linear combinations of the
rows of R'. If R =0 then also R" = PR = 0 and we are done. So we can assume R # (. But
the first row of a nonzero row reduced echelon matrix is nonzero. Assume the leading one of
the first row of R; has occurs in the k-th place. Then the rows of R’ are all linear combinations
of the rows of R the leading one of the first row of R’ also occurs in the k-th place. We now



write R and R’ in block form:

0 --- 1‘312 0o --- 1‘3/12
0 --- 0 0 --- 0

R=|. ., R=|. . |
: . 1| Ra R Y 19
0 --- 0 0 --- 0

where Rj2 and Rj, are of size 1 x (n — k) and Ryp and R}, are (m — 1) x (n — k). Also write
P in block from

, b g; ‘ P12 - Pim Par
p= | L1712 where Py = [p12, ..., P1m], Po1 = :
[ Py | Py . Py 12 [plz P ] 21 :

Pl Pm1,

Py is (m—1)x (m—1) and P;; = py1 is 1 x 1 (that is just a scalar). Now writing out PR = R’
in block form

0 --- 1 ‘ Ris
P BTN B
| o1 | Pao N
0 --- 0
[0 - 0 pn ‘ p11Ri2 + PiaRyy
B 0 - 0 po
D PRy + Py Ry
LO - 0 pm
0 --- 0 1|Ry
, 0 --- 0 0
: : 22
0 --- 0 0
This implies p;; = 1 and pa; = p3; = -+ = Py = 0. That is P = 0. Putting this information
back into the equation gives
0 0 1| R+ PiaRo 0 0 1|Ry
0O --- 0 0 0 --- 0 0
PR=| || =R
: . . . P22R22 . . . . R22
0 --- 0 0 0 --- 00
In particular this implies R}, = PssRso and that
1 ’ Pi2 -+ Pim
0
P=
: Py
0



But then P invertible implies Py, invertible. Also Rys and R}, are both in row reduced echelon
form and RY, = Py Ry along with the induction hypothesis implies Rj, = Ras.

But this in turn implies that R and R have the same number r of nonzero rows and that
the leading ones in each of these rows is in the same column. Let Ry,..., R, be the nonzero
rows of R and R),..., R, the nonzero rows of R’. Let k; be the position of the leading one in
R; (which is the same as the position of the leading one in R}). Then as every row of R is a
linear combination of the rows of R for each ¢ there are scalars cq, ..., ¢, so that

R =ciR + Ry + -+ + e Ry

If we look at the k; position in R] then it is a 1 (as k; was where the leading 1 in R} occurs)
and the same is true of R;. But all of the other vectors R; have a 0 in this place as R is row
reduced. This means that the element in the k; position of ¢i Ry + coRs + -+ + ¢. R, is just
¢; and that his must be equal to 1 (the element in the k; of R;). For j # ¢ we look a similar
argument shows that the element in the k; position of ¢i Ry + coRy + -+ - 4+ ¢, R, is ¢; is ¢; and
this must be equal to the element in the k; position of R; which is 0. In summary: ¢; = 1 and
c; = 0 for j # 4. Therefore

R; :ClRl +02R2+"‘ +CTRT = RZ

As this works for any ¢ this shows R, = R; for i = 1,...,r. Therefore R and R’ have all their
rows equal and thus are equal. This completes the proof. U

2 Summary of Chapter 1

This chapter deals with solving systems of linear equations over a field. A field is a collection
of elements F together with two binary operations addition and multiplication with satisfy the
usual rules of high school algebra in the sense that it is possible to add, subtract, multiple
and divide as usual. In the context of linear algebra elements of the field will often be called
scalars.

The main subject of this chapter is systems of m linear equations in n unknowns with
coefficients from the field F. That is a system of the form

Anzy + -+ Az, =0

(1)

Amlxl + -+ Amnxm = Ym-
The equation is homogeneous iff all the y;’s vanish. That is the system is of the form

Allxn+ te +A1nxn = 0

Amlxl +-+ Amnxm = 0.

The more general system (1) is the itnhomogeneous system. One basic difference between
the homogeneous and inhomogeneous system is that the homogeneous system always has at



least the solution z1 = x9 = - - - x, = 0 (called the trivial solution) while the inhomogeneous
system need not have any solutions in which case it is called tnconsistent. A exmaple of an
inconsistent system would be x1 + x5 = 1 and 225 + 225 = 1.

Given such a system of equations some other equation is a linear combination of elements
in this system if it is formed by multiplying some of the equations in the system by scalars and
adding the results together. Two systems of linear equations are equivalent if and only if
every equation one system is a linear combination of equations in the other system and vice
versa. What makes this notation of equivalence interesting is

Theorem 2.1 Equivalent systems of equations have the same set of solutions.

In doing calculations with systems such as taking linear combinations it soon becomes clear
that all the actual work of the calculations is done with the coefficients A;; of the system and
that the unknowns z; are just along for the ride. This has lead to the notation of a matriz
which is just a rectangular array A = [A;;] of elements. To be more precise a m x n matrix has
m rows, n columns and the element A;; is in the ¢ th row and j th column of A. Associated to
the inhomogeneous system (1) there are four matrices

Ay -0 A T hn
: S : Y= :

A=

The system (1) can then be written as AX =Y and the homogeneous system can be written
as AX = 0. Before going to give the relation between matrices and solving systems of linear
equations it we note that matrices have a good deal of algebra associated with them. If partic-
ular it is possible to multiply a matrix by a scalar so that cA is the matrix obtained form A by
multiplying all of its elements by ¢. The sum A 4+ B of two matrices of the same size is matrix
whose (i, 7)th entry is the sum of the corresponding elements of A and B and the product of
an m X n matrix A with an m x p matrix B is the m x p matrix AB with elements

k=1
This product is associative (i.e. (AB)C = A(BC')) but not commutative (sometimes AB #
BA). Note that when we rewrite the system (1) as AX =Y that the product between A and
X is matrix multiplication. The n x n identity matriz is the matrix I,,,, with entries §;; = 1
if i = j and = 0 if i # j. Or what is the same thing [, is the n x n matrix with 1’s down the
main diagonal and all other elements zero. This matrix is special in that for any m x n matrix

A we have
ImeA = AIan = A

For a square matrix A one to define a matrix B to be the tnverse of A ifft AB = BA =1
where [ is the identity matrix. (While at first it would seem that one might have to define left
inverses, right inverse and two sided inverses we have shown that if A has a one sided inverse
then this one sided inverse is the unique two sided inverse to A, thus at least for square matrices
we do not have to worry about these distinctions). A square matrix with an inverse will be
called a tnvertible or nonsingular iff it has in inverse and it is called singular iff it has
no inverse. The inverse of a nonsingular matrix A will be denoted by A~!. Note if Ay,..., Ay
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are all invertible matrices of the same size then the product A;As--- Ay is also invertible and
(AjAg - At = AJTA - AT
After this digression on matrix algebra we return to systems of equations. The elementary

row operations on a m X n matrix A are

1. Multiplying a row of A by a nonzero scalar.

2. Adding a scalar multiple of one row to anther row.

3. Interchanging two rows of A.
In terms of the corresponding system of equations these operations are the same as multiplying
one of the equations by a nonzero scalar, adding a scalar multiple of one equation to anther
and final interchanging two of the equations. Note that any of these operations can be reversed
by anther elementary row operation of the same type. We also note that each elementary row
operation e can be accomplished by multiplying A on the left by a m x m matrix £. That is
a(A) = E'A. These matrices are called elementary matrices. Two matrices A and B are
row equivalent iff there is a finite sequence of row operations that transform A into B. Or
what is the same thing if there is a finite number of elementary matrices Fy,..., E} is that
B = E}--- E1A. This is very closely related to matrix multiplication because of

Theorem 2.2 Two m xn matrices A and B are row equivalent iff there is a nonsingular m xm
matrix P so that B = PA.

To study the solutions of the homogeneous system AX = 0 note if A and B are row
equivalent then the systems AX = 0 and BX = 0 are equivalent in the sense of Theorem 2.1
and thus have the same solutions. This makes it interesting to try to row reduce the matrix
to as simple a form as possible. The first step in this is a matrix is row reduced iff the first
nonzero element in any row is a 1 and any column that contains a leading row has all its other
elements zero. A matrix is in row reduced echelon form iff if is row reduced, all its nonzero
rows appear above all its zero rows and the leading one in any row appears to the right of all the
leading ones in the rows above it. This turns out to be our simple form under row equivalence:

Theorem 2.3 Every matrix is row equivalent to a unique row reduced echelon matrix.

This allows us to define an important invariant of a matrix, its rank which is the number
of nonzero rows in its row reduced echelon form. This invariant is used in understanding when
the inhomogeneous system AX = 0 has non-trivial solutions. In particular we have

Theorem 2.4 Let R be the row reduced echelon form of the matrix A. Then the general
solution to AX = 0 is obtained by letting the variables that do not correspond to leading ones
in R have arbitrary values and then solving for the variables that correspond to leading ones in
the system RX = 0. Thus if the rank of A is equal to the number of rows (that is the number
of equations) then all variables correspond to leading ones and the system has only the trivial
solution X = 0. However if the rank is less than the number of rows then there will be non-
trivial solutions. In particular this leads to the very important result than any homogeneous
system AX = 0 where the number of unknowns is larger than the number of equations will
have a non-trivial solution.

This tells close to the full story about the homogeneous system AX = 0. To understand the



inhomogeneous equation AX =Y form the augmented matriz
A - A owm
A = . )
Aut o Ana
Obtained from A by adding Y as an extra column. Let r be the rank of A which is the number

of nonzero rows in R. We then row reduce A (not the whole matrix A’) to row reduced echelon
form R. The result is

R A .
? 0 e where Z =
and each of the z;’s is a linear combination of the variables y1,...,¥,,. For any given values
of y1,...,yn if any of the linear expressions z,.1, ..., 2z, is nonzero, then the system will be

inconsistent (these conditions are often called compatibility conditions). If z..1 = 2,9 =
-+« Zy, = 0 then the system is consistent and the general solution is found as in the homogeneous
case by letting the variable not corresponding to leading 1’s in R have arbitrary values and then
solving for the variables that do correspond to leading ones by use of the system RX = Z;.
Note if the rank of A is equal to the number of rows, there are no compatibility conditions and
we have

Theorem 2.5 If the rank of A is equal to the number of rows of A (which is the number of
equations in the system AX =Y') then the inhomogeneous system AX =Y has a solution for
any choice of Y. More generally the number of compatibility conditions is difference between
the number of rows of A and the rank of A.

We specialize this to the case of “square” systems. That is where the number of equations
is equal to the number of unknowns.

Theorem 2.6 For a square n x n matrix the following are equivalent:
1. A is invertible.
2. The homogeneous system AX = 0 has only the trivial solution.
3. The inhomogeneous AX =Y has a solution for every choice of Y.
4. A is row equivalent to the identity matrix I.
5. The rank of A is n.

Finally there are some computational issues that I have not mentioned in the above. These
are things such as finding the inverse of a invertible square matrix A (which is done by aug-
menting A by the identity matrix to get [A, I] and row reducing this to [I, B]. Then B = A~
When appropriate the best way to deal with this type problem is to use some computer package
such as Maple or Matlab. 4



