
Some Notes to Supplement the Lectures in
Mathematics 700

1 The Uniqueness of the Row Reduced Echelon Form

Let A and B be two matrices of the same size and assume that they are row equivalent. Then
there are elementary matrices E1, . . . , Ek so that B = EkEk−1 · · ·E1 · · ·EkA. Then as all the
matrices E1, . . . , Ek are invertible so is the product P := EkEk−1 · · ·E1. Therefore if A and B
are row equivalent matrices there is an invertible matrix P so that B = PA. If we write B∼A
to mean there is an invertible matrix P so that B = PA. Then this is an equivalence relation.
(For letting P = I shows A∼A. If B = PA, then A = P−1B so A∼B implies B∼A. If B = PA
and C = QB then C = QPA so A∼B and B∼C implies A∼B. Of course we know from class
work that this equivalence relation in just the same as row equivalence, but I don’t want to
use this fact in the following proof as then we can use the argument here to give an new proof
of this. A virtue of the proof here is that it gives an example of how to use block matrices to
prove things. It has several vices, such as being more computational than conceptual.

Theorem 1.1 If R and R′ are row reduced echelon matrices of the same size so that for some
invertible matrix P there holds R′ = PR, then R = R′. In particular if R and R′ are row
equivalent then they are equal.

Proof: Assume that R and R′ are both m × n. We will use induction and assume that the
result holds for row reduced echelon matrices with fewer than m rows and show that it holds
when they have m rows. We write

R =




R1
...

Rm


 , R′ =




R′
1
...

R′
m


 , P =




p11 · · · p1m
...

. . .
...

pm1 · · · pmm




where R1, . . . , Rm are the rows of R and R′
1, . . . , R

′
m are the rows of R. Then R′ = PR implies

R′
i =

∑m
j=1 pijRj. That is the rows of R′ are linear combinations of the rows of R. By symmetry

of the equivalence relation ∼ this also implies that the rows of R are linear combinations of the
rows of R′. If R = 0 then also R′ = PR = 0 and we are done. So we can assume R 6= 0. But
the first row of a nonzero row reduced echelon matrix is nonzero. Assume the leading one of
the first row of R1 has occurs in the k-th place. Then the rows of R′ are all linear combinations
of the rows of R the leading one of the first row of R′ also occurs in the k-th place. We now
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write R and R′ in block form:

R =




0 · · · 1 R12

0 · · · 0
...

. . .
... R22

0 · · · 0


 , R′ =




0 · · · 1 R′
12

0 · · · 0
...

. . .
... R′

22

0 · · · 0




where R12 and R′
12 are of size 1 × (n − k) and R22 and R′

22 are (m − 1) × (n − k). Also write
P in block from

P =

[
p11 P12

P21 P22

]
=




p11 p12 · · · p1m

p21
... P22

pm1


 where P12 = [p12, . . . , p1m], P21 =




p21
...

pm1,




P22 is (m−1)× (m−1) and P11 = p11 is 1×1 (that is just a scalar). Now writing out PR = R′

in block form

PR =

[
p11 P12

P21 P22

]



0 · · · 1 R12

0 · · · 0
...

. . .
... R22

0 · · · 0




=




0 · · · 0 p11 p11R12 + P12R22

0 · · · 0 p21
...

. . .
...

... P21R12 + P22R22

0 · · · 0 pm1




= R′ =




0 · · · 0 1 R′
12

0 · · · 0 0
...

. . .
...

... R′
22

0 · · · 0 0




This implies p11 = 1 and p21 = p31 = · · · = pm1 = 0. That is P21 = 0. Putting this information
back into the equation gives

PR =




0 · · · 0 1 R12 + P12R22

0 · · · 0 0
...

. . .
...

... P22R22

0 · · · 0 0


 =




0 · · · 0 1 R′
12

0 · · · 0 0
...

. . .
...

... R′
22

0 · · · 0 0


 = R′.

In particular this implies R′
22 = P22R22 and that

P =




1 p12 · · · p1m

0
... P22

0


 .
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But then P invertible implies P22 invertible. Also R22 and R′
22 are both in row reduced echelon

form and R′
22 = P22R22 along with the induction hypothesis implies R′

22 = R22.
But this in turn implies that R and R have the same number r of nonzero rows and that

the leading ones in each of these rows is in the same column. Let R1, . . . , Rr be the nonzero
rows of R and R′

1, . . . , R
′
r the nonzero rows of R′. Let ki be the position of the leading one in

Ri (which is the same as the position of the leading one in R′
i). Then as every row of R′ is a

linear combination of the rows of R for each i there are scalars c1, . . . , cr so that

R′
i = c1R1 + c2R2 + · · · + crRr.

If we look at the ki position in R′
i then it is a 1 (as ki was where the leading 1 in R′

i occurs)
and the same is true of Ri. But all of the other vectors Rj have a 0 in this place as R is row
reduced. This means that the element in the ki position of c1R1 + c2R2 + · · · + crRr is just
ci and that his must be equal to 1 (the element in the ki of Ri). For j 6= i we look a similar
argument shows that the element in the kj position of c1R1 + c2R2 + · · · + crRr is cj is cj and
this must be equal to the element in the kj position of R′

i which is 0. In summary: ci = 1 and
cj = 0 for j 6= i. Therefore

R′
i = c1R1 + c2R2 + · · · + crRr = Ri.

As this works for any i this shows R′
i = Ri for i = 1, . . . , r. Therefore R and R′ have all their

rows equal and thus are equal. This completes the proof.

2 Summary of Chapter 1

This chapter deals with solving systems of linear equations over a field. A field is a collection
of elements F together with two binary operations addition and multiplication with satisfy the
usual rules of high school algebra in the sense that it is possible to add, subtract, multiple
and divide as usual. In the context of linear algebra elements of the field will often be called
scalars.

The main subject of this chapter is systems of m linear equations in n unknowns with
coefficients from the field F. That is a system of the form

A11xn + · · · + A1nxn = y1

...
...

...
...(1)

Am1x1 + · · · + Amnxm = ym.

The equation is homogeneous iff all the yi’s vanish. That is the system is of the form

A11xn + · · · + A1nxn = 0
...

...
...

...

Am1x1 + · · · + Amnxm = 0.

The more general system (1) is the inhomogeneous system . One basic difference between
the homogeneous and inhomogeneous system is that the homogeneous system always has at
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least the solution x1 = x2 = · · · xn = 0 (called the trivial solution) while the inhomogeneous
system need not have any solutions in which case it is called inconsistent . A exmaple of an
inconsistent system would be x1 + x2 = 1 and 2x2 + 2x2 = 1.

Given such a system of equations some other equation is a linear combination of elements
in this system if it is formed by multiplying some of the equations in the system by scalars and
adding the results together. Two systems of linear equations are equivalent if and only if
every equation one system is a linear combination of equations in the other system and vice
versa. What makes this notation of equivalence interesting is

Theorem 2.1 Equivalent systems of equations have the same set of solutions.

In doing calculations with systems such as taking linear combinations it soon becomes clear
that all the actual work of the calculations is done with the coefficients Aij of the system and
that the unknowns xi are just along for the ride. This has lead to the notation of a matrix
which is just a rectangular array A = [Aij] of elements. To be more precise a m×n matrix has
m rows, n columns and the element Aij is in the i th row and j th column of A. Associated to
the inhomogeneous system (1) there are four matrices

A :=




A11 · · · A1n
...

. . .
...

Am1 · · · Amn


 , X :=




x1
...

xn


 , Y :=




y1
...

ym




The system (1) can then be written as AX = Y and the homogeneous system can be written
as AX = 0. Before going to give the relation between matrices and solving systems of linear
equations it we note that matrices have a good deal of algebra associated with them. If partic-
ular it is possible to multiply a matrix by a scalar so that cA is the matrix obtained form A by
multiplying all of its elements by c. The sum A + B of two matrices of the same size is matrix
whose (i, j)th entry is the sum of the corresponding elements of A and B and the product of
an m × n matrix A with an m × p matrix B is the m × p matrix AB with elements

(AB)ij =
n∑

k=1

AikBkj.

This product is associative (i.e. (AB)C = A(BC)) but not commutative (sometimes AB 6=
BA). Note that when we rewrite the system (1) as AX = Y that the product between A and
X is matrix multiplication. The n×n identity matrix is the matrix In×n with entries δij = 1
if i = j and = 0 if i 6= j. Or what is the same thing In×n is the n× n matrix with 1’s down the
main diagonal and all other elements zero. This matrix is special in that for any m× n matrix
A we have

Im×mA = AIn×n = A.

For a square matrix A one to define a matrix B to be the inverse of A iff AB = BA = I
where I is the identity matrix. (While at first it would seem that one might have to define left
inverses, right inverse and two sided inverses we have shown that if A has a one sided inverse
then this one sided inverse is the unique two sided inverse to A, thus at least for square matrices
we do not have to worry about these distinctions). A square matrix with an inverse will be
called a invertible or nonsingular iff it has in inverse and it is called singular iff it has
no inverse. The inverse of a nonsingular matrix A will be denoted by A−1. Note if A1, . . . , Ak
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are all invertible matrices of the same size then the product A1A2 · · ·Ak is also invertible and
(A1A2 · · ·Ak)

−1 = A−1
k A−1

k−1 · · ·A−1
1 .

After this digression on matrix algebra we return to systems of equations. The elementary
row operations on a m × n matrix A are

1. Multiplying a row of A by a nonzero scalar.
2. Adding a scalar multiple of one row to anther row.
3. Interchanging two rows of A.

In terms of the corresponding system of equations these operations are the same as multiplying
one of the equations by a nonzero scalar, adding a scalar multiple of one equation to anther
and final interchanging two of the equations. Note that any of these operations can be reversed
by anther elementary row operation of the same type. We also note that each elementary row
operation e can be accomplished by multiplying A on the left by a m × m matrix E. That is
a(A) = EA. These matrices are called elementary matrices. Two matrices A and B are
row equivalent iff there is a finite sequence of row operations that transform A into B. Or
what is the same thing if there is a finite number of elementary matrices E1, . . . , Ek is that
B = Ek · · ·E1A. This is very closely related to matrix multiplication because of

Theorem 2.2 Two m×n matrices A and B are row equivalent iff there is a nonsingular m×m
matrix P so that B = PA.

To study the solutions of the homogeneous system AX = 0 note if A and B are row
equivalent then the systems AX = 0 and BX = 0 are equivalent in the sense of Theorem 2.1
and thus have the same solutions. This makes it interesting to try to row reduce the matrix
to as simple a form as possible. The first step in this is a matrix is row reduced iff the first
nonzero element in any row is a 1 and any column that contains a leading row has all its other
elements zero. A matrix is in row reduced echelon form iff if is row reduced, all its nonzero
rows appear above all its zero rows and the leading one in any row appears to the right of all the
leading ones in the rows above it. This turns out to be our simple form under row equivalence:

Theorem 2.3 Every matrix is row equivalent to a unique row reduced echelon matrix.

This allows us to define an important invariant of a matrix, its rank which is the number
of nonzero rows in its row reduced echelon form. This invariant is used in understanding when
the inhomogeneous system AX = 0 has non-trivial solutions. In particular we have

Theorem 2.4 Let R be the row reduced echelon form of the matrix A. Then the general
solution to AX = 0 is obtained by letting the variables that do not correspond to leading ones
in R have arbitrary values and then solving for the variables that correspond to leading ones in
the system RX = 0. Thus if the rank of A is equal to the number of rows (that is the number
of equations) then all variables correspond to leading ones and the system has only the trivial
solution X = 0. However if the rank is less than the number of rows then there will be non-
trivial solutions. In particular this leads to the very important result than any homogeneous
system AX = 0 where the number of unknowns is larger than the number of equations will
have a non-trivial solution.

This tells close to the full story about the homogeneous system AX = 0. To understand the
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inhomogeneous equation AX = Y form the augmented matrix

A′ :=




A11 · · · A1n y1
...

. . .
...

Am1 · · · Amn ym




Obtained from A by adding Y as an extra column. Let r be the rank of A which is the number
of nonzero rows in R. We then row reduce A (not the whole matrix A′) to row reduced echelon
form R. The result is 


R Z1

0 · · · 0 zr+1
...

. . .
...

...
0 · · · 0 zm


 where Z1 :=




z1
...
zr




and each of the zi’s is a linear combination of the variables y1, . . . , ym. For any given values
of y1, . . . , ym if any of the linear expressions zr+1, . . . , zm is nonzero, then the system will be
inconsistent (these conditions are often called compatibility conditions). If zr+1 = zr+2 =
· · · zm = 0 then the system is consistent and the general solution is found as in the homogeneous
case by letting the variable not corresponding to leading 1’s in R have arbitrary values and then
solving for the variables that do correspond to leading ones by use of the system RX = Z1.
Note if the rank of A is equal to the number of rows, there are no compatibility conditions and
we have

Theorem 2.5 If the rank of A is equal to the number of rows of A (which is the number of
equations in the system AX = Y ) then the inhomogeneous system AX = Y has a solution for
any choice of Y . More generally the number of compatibility conditions is difference between
the number of rows of A and the rank of A.

We specialize this to the case of “square” systems. That is where the number of equations
is equal to the number of unknowns.

Theorem 2.6 For a square n × n matrix the following are equivalent:

1. A is invertible.

2. The homogeneous system AX = 0 has only the trivial solution.

3. The inhomogeneous AX = Y has a solution for every choice of Y .

4. A is row equivalent to the identity matrix I.

5. The rank of A is n.

Finally there are some computational issues that I have not mentioned in the above. These
are things such as finding the inverse of a invertible square matrix A (which is done by aug-
menting A by the identity matrix to get [A, I] and row reducing this to [I, B]. Then B = A−1.
When appropriate the best way to deal with this type problem is to use some computer package
such as Maple or Matlab.
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