
Number Theory Homework.

1. The Euclidean algorithm and linear Diophantine equations.

By a Diophantine1 equation we mean a polynomial equation in two
or more variables with integer coefficients and it is required to find integer
solutions.

Here are examples:

ax+ by = c Where a, b and c are integers. This is the linear Diophan-
tine equation. We will find all solutions to this equation
in this section (when any exist).

x2 + y2 = z2 The solutions to this are Pythagorean triples. These are
the side lengths of right triangles where the lengths of both
legs and the hypotenuse have integral lengths. The best
known example is the 3, 4, 5 triangle (52 = 32 + 42). We
will find all Pythagorean triples during the course of the
semester.

xn + yn = zn Where n ≥ 3. This is the Fermat equation . It was
stated in 1637 by Fermat that this equation has no solu-
tion in positive integers. This became known as Fermat’s
Last Theorem and for a couple of centuries was the proba-
bly the most famous unsolved problem in mathematics. It
was shown to be true by the British mathematician Andrew
Wiles in 1994. An early notion of ideals in rings (we have
seen ideals in the integers) was introduced by Ernst Kum-
mer in the mid 1800s, to prove the result for a large number
of integers n, for example all n ≤ 100 other than 37, 59, and
67.

x2 − ny2 = 1 With n a positive integer that is not a perfect square and we
look for nontrivial solutions (that is other than x = ±1 and
y = 0). This is Pell’s equation . It has a solution for all
such n, but they may not be easy to find. For example when
n = 60 the smallest solution is x = 31 and y = 4 (which one
can imagine finding by trial and error), but just change n by
1 to n = 61 the and smallest solution is x = 1,766,319,049
and y = 226,153,980 (which is be not going to be found by
trial and error).

1Named after Diophantus of Alexandria who studied such equations in the 3rd Century
AD.
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Here we will just consider the linear Diophantine equation. We start with
some examples that give an indication of when this equation has a solution.

3x+ 4y = 19.

This has a solution x = 1, y = 4 (and from this solution we can construct
infinitely many solutions x = 1 + 4t and 4 − 3t where t is an integer.) On
the other hand,

4x+ 6y = 13

has no integral solutions, because if x and y are integers then the left side
of the equation is even, but 13 is odd. As anther example

6x− 9y = 14

has no integral solutions as the left side is dividable by 3, but the right side
is not. It turns out this problem of the left side of ax + by = c having
a divisor that the right side does not have is the only obstruction to the
equation having integral solutions.

Theorem 1 (Solution to the linear Diophantine equation). If a, b, and c
are integers with a and b both nonzero, then

ax+ by = c

has a solution if and only if

gcd(a, b) | c.
If (x0, y0) is one solution, then the general solution2 is

x = x0 −
bt

gcd(a, b)
, y = y0 +

at

gcd(a, b)
. (1)

Remark 2. In the this theorem it is often convenient to use the following
notation. Let

a′ =
a

gcd(a, b)
, b′ =

b

gcd(a, b)
.

Then the general solution is

x = x0 − a′t, y = y0 + b′t.

You will also often see the general solution written with t replaced by −t,
that is

x = x0 + a′t, y = y0 − b′t.
This gives the same set of solutions, just listed in the reverse order. �

Problem 1. Prove Theorem 1 along the following lines. First show the easy
direction, that is if ax+ by = c has a solution, then gcd(a, b) | c.

In the other direction we assume that gcd(a, b) | c and show that the
equation has a solution. To simplify notation set

d = gcd(a, b).

2By “general solution” we mean that this gives all solutions.
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We are assuming that d | c and therefore there is an integer c′ such that

c = dc′.

(a) Explain why there are integers x1 and y1 such that

ax1 + by1 = d. (2)

Hint: Bézout’s Theorem.
(b) Let x0 = c′x1 and y0 = c′y1. Explain why (x0, y0) is a solution to the

equation ax+ by = c. Hint: Multiply both sides of 2 by c′.

So we have now shown ax+ by = c has a solution if and only if d | c.
We still need to find all solutions.

(c) Show that x and y given by equations (1) are solutions.

Now we just need to check that these give all solutions. Still using the
notation d = gcd(a, b) write a = a′d, b = b′d. Let (x0, y0) be a solution of
ax+ by = c and let (x, y) be any other solution.

(d) Explain why gcd(a′, b′) = 1.
(e) Show

a(x− x0) + b(y − y0) = 0

and use this to show

a′(x− x0) + b′(y − y0) = 0.

(f) Thus implies b′(y − y0) = −a′(x − x0) = and therefore a′ | b′(y − y0).
Use this to show a′ | (y − y0). Hint: We have a result that says if
gcd(α, β) = 1 and α | βγ, then α | γ.

(g) As a′ | (y − y0) there is an integer t such that (y − y0) = a′t. Plug this
into a′(x− x0) + b′(y − y0) to show (x− x0) = −b′t.

(h) Put this all altogether to get

x = x0 − b′t, y = y0 + a′t

which is just a rewritten form of the equations (1) for the general solu-
tion. Thus we have that every solution is of the required form and the
proof is finished. �

The existence part of this can be generalized to more than two variables.

Proposition 3. Let a, b, c be nonzero integers. Then for any integer d the
Diophantine equation

ax+ by + cz = d

has a solution if and only if gcd(a, b, c) | d.

Problem 2. Prove this along the lines of parts (a), (b), and (c) of the last
problem. �

And of course we do not have to stop at three.
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Problem 3. Show that if a1, a2, . . . , an are nonzero integers and b ∈ Z, then
the linear Diophantine equation

a1x1 + a2x2 + · · ·+ anxn = b

has a solution if and only if

gcd(a1, a2, . . . , an) | b.
�

This is all good from the theoretical point of view, but we would like an
effective method for finding the solutions. Note the the proof above reduces
solving ax + by = c to finding a particular solution to the Bézout equation
ax+ by = gcd(a, b). We now show how the Euclidean algorithm can be used
to find such solution in a effective manner.

Let a = 116 and b = 248 and we wish to find x0 and y0 with 116x0 +
248y0 = gcd(116, 248). We divide a into b, take that remainder and divide
that into a and keep that process up. (Here and in following calculations we
put parenthesis around the numbers are currently the center of our attention.
This is not for any mathematical reason, it is just a bookkeeping trick to
hopefully make the calculations easier to follow.)

(248) = 2(116) + (16) i.e. (16) = (248)− 2(116)

(116) = 7(16) + (4) i.e. (4) = (116)− 7(16)

(16) = 4(4) + (0)

From this we see gcd(116, 248) = 4. And we can work backwards through
this to get

(4) = (116)− 7(16)

= (116)− 7
(
(248)− 2(116)

)
= 15(116)− 7(248)

and we therefore have that x0 = 15 and y0 = −7 is a solution to 116x +
248y = gcd(116, 248) = 4. To do a more complicated example consider
finding the example of gcd(632, 2642) = 2 from the last homework. As we
are most interested in the remainders we will write the divisor algorithm in
the form

(r) = (b)− q(a) rather than b = qa+ r.

(114) = (2642)− 4(632)

(62) = (632)− 5(114)

(52) = (114)− 1(62)

(10) = (62)− 1(52)

(2) = (52)− 5(10)
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and we stop here as 2 | 10. Now keep doing backward substations in this to
get

(2) = (52)− 5(10) = (52)− 5
(
(62)− (52)

)
= −5(62) + 6(52) = −5(62) + 6

(
(114)− 1(62)

)
= 6(114)− 11(62) = 6(114)− 11

(
(632)− 5(144)

)
= −11(632) + 61(114) = −11(632) + 61

(
(2642)− 4(632)

)
= 61(2642)− 255(632)

Therefore x0 = 61 and y0 = −255 is solution to ax+ by = 2642x+ 632y = 2
and the general solution is

x = x0 −
b

gcd(a, b)
t = 61− 632

2
t = 61− 316t

y = y0 +
a

gcd(a, b)
t = −255 +

2642

2
t = −255 + 1321t.

Example 4. Find all solutions to the Diophantine equation

324x− 142y = 30.

We start by using the Euclidean algorithm to find the greatest common
divisor of 324 and −142.

(40) = (324) + 2(−142)

(18) = (−142) + 4(40)

(4) = (40)− 2(18)

(2) = (18)− 4(4)

Thus gcd(324,−142) = 2 and 2 | 30, whence this Diophantine has a solution.
Now work backwards,

(2) = (18)− 4(4) = (18)− 4
(
(40)− 2(18)

)
= −4(40) + 9(18) = −4(40) + 9

(
(−142) + 4(40)

)
= 9(−142) + 32(40) = 9(−142) + 32

(
(324) + 2(−142)

)
= 32(324) + 73(−142)

Therefore

324(32)− 142(73) = 2

Multiply this by 15 to get

324(15 · 32)− 142(15 · 73) = 15 · 2,

that is

324(480)− 142(1095) = 30.
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Thus x0 = 480 and y0 = 1095 is one solution to the equation. The general
solution is then

x = 480− −142

2
t = 480 + 71t

y = 1095 +
324

2
t = 1095 + 162t

where t can be any integer. �

Example 5. A samll post office has only 13¢ and 17¢ stamps. How many
ways can a postage of $5.76 be done?

Let x be the number of 13¢ stamps and y the number of 17¢ stamps.
Then the problem is equivalent to finding all solutions to the Diophantine
equation

13x+ 17y = 576

with x ≥ 0 and y ≥ 0. Clearly gcd(13, 17) = 1 | 576 so there will be
solutions in integers (which does not necessarily mean there are solutions in
nonnegative integers). First use the Euclidean algorithm to find solutions
to Bézout’s equation.

(4) = (17)− (13)

(1) = (13)− 3(4).

and therefore

(1) = (13)− 4(4) = (13)− 3
(
(17)− (13)

)
= 4(13)− 3(17).

Thus
13(4) + 17(−3) = 1.

Multiply by 576 to get

13(4 · 576) + 17(−3 · 576) = 13(2304) + 17(−1728) = 576.

This gives the pair x0 = 2304 and y0 = −1728 as one solution. The general
solution is

x = 2304− 17t, y = −1728 + 13t.

We are only interested in solutions that are nonnegative.

x = 2304− 17t ≥ 0 =⇒ t ≤ 2304

17
= 135.529 . . .

Which implies t ≤ 135 because t is an integer. Also

y = −1728 + 13t ≥ 0 =⇒ t ≥ 1728

13
= 132.923 . . .

which implies t ≥ 133. Thus 133 ≤ t ≤ 135. So only the values t = 133,
t = 134, and t = 135 give solutions to our problem. These give

(x, y) = (2304− 17 · 133,−1728 + 13 · 133) = (43, 1)

(x, y) = (2304− 17 · 134,−1728 + 13 · 134) = (26, 14)

(x, y) = (2304− 17 · 135,−1728 + 13 · 135) = (9, 27)
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for the number, x, of 13¢ stamps and, y, the number of 17¢ stamps. �

This suggests a more general problem. If a, b, and c are positive, are there
conditions that guarantee that ax+ by = c has a nonnegative solution?

Proposition 6 (Sylvester, 1884). If a, b, and c be positive integers with
gcd(a, b) = 1 and c ≥ (a− 1)(b− 1). Then there are nonnegative integers x
and y with

ax+ by = c.

This is sharp in the sense that if c = (a− 1)(b− 1)− 1 = ab− a− b then the
equation has no solution in nonnegative integers.

Proof. Let (x0, y0) be the an integral solution to ax + by = c. Then the
general solution is

x = x0 − bt, y = y0 + at.

By the division algorithm we can choose t such that x1 := x0 − bt satisfies
0 ≤ x1 ≤ b − 1. Let y1 = y0 + at. Then ax1 + by1 = c and x1 ≥ 0. So it is
enough to show y1 ≥ 0.

by1 = c− ax1
≥ (a− 1)(b− 1)− ax1
≥ (a− 1)(b− 1)− a(b− 1)

= (b− 1)(a− 1− a)

= −(b− 1).

Divide by b

y1 ≥ −
(b− 1)

b
= −1 +

1

b
> −1.

As y1 is an integer this implies y1 ≥ 0. Therefore ax + by = c has the
nonnegative solution (x, y) = (x1, y1).

For the second part of the Proposition, assume, towards a contradiction,
that

ax+ by = ab− a− b

has a solution with x, y ≥ 0. Rewrite as

ab = a(x+ 1) + b(y + 1).

This implies that a | b(y + 1) and as gcd(a, b) = 1 this farther implies
a | (y + 1). As y ≥ 0 this yields that (y + 1) ≥ a. Likewise b | a(x + 1),
gcd(a, b) = 1 gives that b | (x+ 1) ≥ 1 and x ≥ 0 therefore gives (x+ 1) ≥ b.
This yields

ab = a(x+ 1) + b(y + 1) ≥ ab+ ab = 2ab

the required contradiction. �
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Problem 4. For the following pairs (a, b) of integers use the Euclidean
algorithm to find integers x and y that solve the Bézout equation ax+ by =
gcd(a, b).
(a) (a, b) = (16, 12) (b) (a, b) = (8,−3) (c) (a, b) = (−12, 10)
(d) (a, b) = (−21,−28) (e) (a, b) = (653, 291) (f) (a, b) = (741,−432)
(g) (a, b) = (−534, 972) (h) (a, b) = (−548,−362). �

Problem 5. For the following linear Diophantine equation equations deter-
mine if they have solutions. If they do, give the general solution.
(a) 6x+ 4y = 12 (b) 6x− 4y = 12 (c) 37x− 47y = 15
(d) 432x− 974y = 3 (e) 432x− 974y = 14 (f) 31x+ 19y = 102
(g) 20x+ 34y = 1 (h) 21x+ 34y = 1 �

Problem 6. Find all nonnegative integral solutions to the following:
(a) 3x+ 4y = 100 (b) 12x+ 18y = 204 (c) 7x− 9y = 3 �

1.1. The linear Diophantine equation in three or more variables.
Under some conditions on the coefficients it is very easy to adapt what
we have just done to finding the general solution to the linear Diophantine
equation in three or more variables.

Example 7. Consider
5x+ 2y + 3z = 12.

We rewrite this as
5x+ 2y = 12− 3z.

As gcd(5, 2) = 1 | (12 − 3z) for any value of z, this is solvable for x and y
for any value of z. We see by inspection that

5(1) + 2(−2) = (1).

Multiply by 12− 3z to get

(12− 3z) + 2(−24 + 6z) = (12− 3z).

Thus (x0, y0) = (12 − 3z,−24 + 6z) is a particular solution to 5x + 2y =
12− 3z. Whence the general solution is

x = 12− 3z − 2t, y = −24 + 6z + 5t

with t ∈ Z. This can be made to look a bit more aesthetic by introducing
a new variable s for z, that is set z = s and writing the general solution to
the original equation in the more symmetric form.

x = 12− 3s− 2t

y = −24 + 6s+ 5t

z = s

The condition that made this easy was gcd(5, 2) = 1 so that 5x+2y = 12−3z
has a solution for all z. �

Problem 7. Find the general solution to the following linear Diophantine
equations.
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(a) 13x+ 5y + 2z = 100.
(b) 6x + 4y + 5z = 98. Hint: For this one you should start with either

4y + 5z = 98− 6x or 6x+ 5z = 98− 4y. Why is this? �

Consider the general linear Diophantine equation

ax+ by + cz = d

in three variables. By Proposition 3 this has a solution if and only if
gcd(a, b, c) | d. If this is the case we can divide the equation through by
gcd(a, b, c) and assume that gcd(a, b, c) = 1. If there is a pair of the coef-
ficients a, b, or c, say a and b, with gcd(a, b) = 1, then we can rewrite the
equation as ax+ by = d− cz and this will have a solution for all z ∈ Z.

Example 8. Things are less straightforward if we have an equation such as

ax+ by + cz = 6x+ 10y + 15z = 23

where gcd(a, b, c) = 1, so the equation is solvable, but gcd(a, b) = gcd(6, 10) =
2, gcd(b, c) = gcd(10, 15) = 5, and gcd(a, c) = gcd(6, 15) = 3. Thus moving
one term to the right, say,

6x+ 10y = 23− 15z

gives an equation that is not solvable for all values of z, but only for those
values where gcd(6, 10) = 2 | (23− 15z). But 2 | (23− 15z) if and only if z
is odd. We can guarantee z is odd by setting z = 2s+ 1 with s ∈ Z. Then
the equation becomes

6x+ 10y = 23− 15(2s+ 1) = 8− 30s.

Which has a solution for all integers s. We first need a solution to 6x+10y =
gcd(6, 10) = 2. We could use the Euclidean algorithm, but in this case
inspection shows

6(2) + 10(−1) = (2).

Multiply by 4− 15s to get

6(8− 30s) + 10(−4 + 15s) = (8− 30s)

so that x0 = 8− 30s, y0 = −4 + 15s is a particular solution to his equation.
Therefore the general solution to 6x+ 10y = 23− 15(2s+ 1) = 8− 30s is

x = 8− 30s− 5t, y = −4 + 15s+ 3t.

Whence the general solution to the original equation, 6x+ 10y + 15z = 23,
is

x = 8− 30s− 5t

y = −4 + 15s+ 3t

z = 1 + 2s
�
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Example 9. Here is a slightly more complicated example.

35x+ 21y + 15z = 101.

Rewrite as

35x+ 21y = 101− 15z

This will have solution if and only if gcd(35, 21) = 7 | (101− 15z). The idea
is to let z = 7s+ r and choose r in such a way that 7 | (101− 15z).

101− 15z = 101− 15(7s+ r) = 101− 15r − 105s.

If r = 3 this becomes

101− 35z = 56− 105s = 7(8− 15s)

Letting z = 7s+ 3 in 35x+ 21y = 101− 15z gives

35x+ 21y = 7(8− 15s).

To keep the numbers smaller divide by 7

5x+ 3y = 8− 15s.

A particular solution to

5x+ 3y = 1

is (−1, 2):

5(−1) + 3(2) = (1)

which we multiply by 8− 15s to get

5(−8 + 15s) + 3(16− 30s) = (8− 15s).

which shows that (x0, y0) = (−8, 15s, 16 − 30s) is a particular solution to
5x+ 3y = 8− 15s. Therefore the general solution is

x = −8 + 15s− 3t, y = 16− 30s+ 5t.

Finally, getting back to the original problem, the general solution is

x = −8 + 15s− 3t

y = 16− 30s+ 5t

z = 3 + 7s.
�

We now outline why this method works. Starting with

ax+ by + cz = d

with gcd(a, b, c) | d. We move one variable to the right. To be concrete we
move cz

ax+ by = d− cz (3)

For for a fixed z this will have a solution for x and y if and only if gcd(a, b) |
(d − cz). Let z = gcd(a, b)s + r where s is a variable and we will choose r
shortly. We want

d− cz = d− c(gcd(a, b)s+ r) = (d− cr)− c gcd(a, b)s
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to be divisible by gcd(a, b). This happens if and only if gcd(a, b) | (d − cr)
which is equivalent to there being a u such that (d− cr) = u gcd(a, b) which
can be rewritten as

cr + gcd(a, b)u = d.

But gcd(c, gcd(a, b)) = gcd(a, b, c) and gcd(a, b, c) | d. Whence by Theorem 1
there are r = r0 and u = u0, both integers, such that cr0 + gcd(a, b)u0 = d,
that is (d − cr0) = gcd(a, b)u0. Combining this with some of the equations
above

d−cz = (d−cr0)−c gcd(a, b)s = gcd(a, b)u0−c gcd(a, b)s = gcd(a, b)(u0−cs)
and using this and z = gcd(a, b)s+ r in (3) gives

ax+ by = gcd(a, b)(u0 − cs)
which has a solution for all s ∈ Z. Let (x, y) = (x0, y0) be a particular
solution solution to ax + by = gcd(a, b). Multiplying the equation a(x0) +
b(y0) = (gcd(a, b)) by (u0−cs) shows (x0(u0−cs), y0(u0−cs)) is a particular
solution to ax+ by = gcd(a, b)(u0− cs) and therefore the general solution to
this equation is x = x0− (u0− cs)bt/ gcd(a, b), y = y0(u0− cs) +a/ gcd(a, b)
and finally the solution to the original equation is

x = x0(u0 − cs)−
(

b

gcd(a, b)

)
t

y = y0(u0 − cs) +

(
a

gcd(a, b)

)
t

z = gcd(a, b)s+ r0.

Problem 8. Find the general solutions to the following Diophantine equa-
tions.

(a) 12x+ 15y + 20z = 14
(b) 21x− 14y + 10z = 6
(c) 30x+ 42y + 70z + 105w = 19 �


