Catalan Numbers and Grouping with Parenthesis.

Here is the correct version of how many ways to group n factors with parenthesis. Call this number P_{n}. We set

$$
P_{1}=1
$$

just because it makes things work out nicely (rather like setting $0!=1$). $P_{2}=1$ as there is only one way to do the grouping:
(ab).
$P_{3}=2$ as there are two groupings:

$$
(a b) c, \quad a(b c) .
$$

$P_{4}=5$ as there are 5 groupings:

$$
a(b(c d)), \quad a((b c) d), \quad(a b)(c d), \quad(a(b c)) d, \quad((a b) c) d .
$$

$P_{5}=14$. This can be seen as without writing all the groupings down by noting that if we have a product of 5 factors $a b c d e$ then it will be one of the forms

$$
w_{1}\left(w_{4}\right), \quad\left(w_{2}\right)\left(w_{3}\right), \quad\left(w_{3}\right)\left(w_{2}\right), \quad\left(w_{4}\right) w_{1}
$$

where w_{j} will be an a product of j factors. Then there are $P_{1} \times P_{4}=1 \times 5=5$ groupings of the form $w_{1}\left(w_{4}\right)$, there are $P_{2} \times P_{3}=1 \times 2=2$ of the form $\left(w_{2}\right)\left(w_{3}\right), P_{3} \times P_{2}=2 \times 1=2$ of the form $\left(w_{3}\right)\left(w_{2}\right)$, and $P_{4} \times P_{1}=5 \times 1=5$ of the form $\left(w_{4}\right) w_{1}$. Adding these up gives a total of

$$
P_{5}=P_{1} P_{4}+P_{2} P_{3}+P_{3} P_{2}+P_{4} P_{1}=5+2+2+5=14 .
$$

This same argument shows that

$$
\begin{aligned}
P_{6} & =P_{1} P_{5}+P_{2} P_{4}+P_{3} P_{3}+P_{4} P_{2}+P_{5} P_{1} \\
& =(1)(14)+(1)(5)+(2)(2)+(5)(1)+(14)(1)=42
\end{aligned}
$$

and in general

$$
\begin{equation*}
P_{n}=P_{1} P_{n-1}+P_{2} P_{n-2}+\cdots+P_{n-1} P_{1}=\sum_{k=1}^{n-1} P_{k} P_{n-k} \tag{1}
\end{equation*}
$$

which can be used to compute P_{n} once we have computed $P_{1}, P_{2}, \ldots, P_{n-1}$. The first several are

n	2	3	4	5	6	7	8	9	10	11	12	13
P_{n}	1	2	5	14	42	132	429	1,430	4,862	16,796	58,786	208,012

The recursive formula (1) and induction can be used to show

$$
P_{n}=\frac{1}{n}\binom{2(n-1)}{n-1} .
$$

However this is not a trivial proof.

The n-th Catalan number is defined to be

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

and therefore the formula I should have given in class is:

$$
P_{n}=C_{n-1} .
$$

