
Homework for Spring Break.

These problems will be due on the Wednesday after Spring. So you can
ask question about them on the Monday when we return. The assignment
is not so long that if you work on it a three or four times over the break
that it will be a big time sink, but it is long enough that it will be hard to
do between Monday and Wednesday after the break. So it good to work on
it over the break.

There will be a quiz on Monday after the break. It will cover the
following.

(1) Knowing the statement of Cauchy’s Theorem.
(2) Knowing the statement of Green’s Theorem.
(3) Knowing how to use Green’s together with the Cauchy-Riemann

equations to prove Cauchy’s Theorem.
(4) Knowing the statement of the Cauchy Integral Theorem.

Here is a summary of part of the main plot, at least as related to analytic
functions, to date.

Definition 1. A complex valued function f(z) is analytic on an open
subset D of C iff it is complex differentiable in D. That is for all z ∈ D

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)
∆z

exists. �

By computing the limit in the definition of f ′(z) in two ways, first by
letting ∆z = ∆x → 0 through real values, and second by letting ∆z =
i∆y → 0 go to zero through imaginary values we derived

Theorem 1 (Cauchy-Riemannian equations). If a function f(z) = u +
iv has continuous first partial derivatives in the open set D, then f(z) is
analytic if and only if u and v satisfy

ux = vy, uy = −vx.
�

Then, from our vector calculus class, we recalled

Theorem 2 (Green’s Theorem). Let D be a bounded domain in C with a
nice boundary ∂D. Then if P (x, y) and Q(x, y) are functions on the closure
of D that have continuous partial derivatives then∫

∂D
P dx+Qdy =

∫∫
D

(−Py +Qx) dx dy.
�

Green’s theorem and the Cauchy-Riemann equations then combine in an
easy and natural way to give:
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Theorem 3 (Cauchy’s Theorem). Let D be a bounded domain with nice
boundary and f(z) a function that is analytic on the closure of D. Then∫

∂D
f(z) dz = 0.

�

While I have mentioned the following terms in class I may have been a
bit vague, so here are formal definitions.

Definition 2. A domain in C is a connected open set D. �

Definition 3. A domain is simply connected iff it has no holes in it.
(Figure 1 shows some simply connected domains and Figure 2 shows some
non-simply connected domains.) �

Figure 1. Three simply connected domains.

Figure 2. Three non-simply connected domains.

We used Cauchy’s Theorem to show

Theorem 4. Let f(z) be analytic in a simply connected domain D. Then
f(z) has an antiderivative in D. That is there is a function F (z) defined in
D with F ′(z) = f(z) in D. �

Remark 1. We only showed this in detail when the domain was starlike. But
it is not hard to extend the result to general simply connected domains.

Definition 4. Let f(z) be analytic in the domain D. Then g(z) is a loga-
rithm of f(z) in D iff eg(z) = f(z). �

Problem 1. Explain why this is the proper definition of g(z) being a loga-
rithm of f(z). �
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Problem 2. Show that if g(z) is a logarithm of f(z) in D then for any
integer n the function h(z) = g(z) + 2πni is also a logarithm of f(z). Thus
logarithms are never unique. �

There is an easy condition that implies that f(z) has a logarithm.

Theorem 5. Let D be a simply connected domain and f(z) a function that
is analytic in D and nonvanishing in D (that is f(z) 6= 0 for all z ∈ D).
Then f(z) has a logarithm in D.

Problem 3. Prove this along the following lines. (This proof is motivated
by noting that if g(z) = log f(z) then we should have g′(z) = f ′(z)/f(z).)

(a) While we have not shown it yet1, it is true that if f(z) is analytic,

so is its derivative f ′(z). Explain why
f ′(z)
f(z)

is analytic in D. Hint:

This really does not involve any more than saying f(z) 6= 0 in D.

(b) Explain why
f ′(z)
f(z)

has an anti-derivative. Call this anti-derivative

g1(z). Hint: Theorem 4.
(c) Show that f(z)e−g1(z) is constant. Hint: About the most natural

way to show that a function is constant is to show its derivative is
zero. Note that

d

dz

(
f(z)e−g1(z)

)
= f ′(z)e−g1(z) − f(z)g′1(z)e−g1(z).

and, as g1(z) is an anti-derivative of f ′(z)/f(z)

g′1(z) =
f ′(z)
f(z)

.

(d) From part (c) we have f(z)e−g1(z) = c for some non-zero complex
constant c. Thus f(z) = ceg1(z). Show that there is a complex
constant a so that g(z) = g1(z) + a is a logarithm of f(z). �

We can also take roots in simply connected domains.

Theorem 6. Let f(z) be analytic and nonvanishing in the simply connected
domain D and let n be a positive integer. Then there is an analytic function
h(z) with

h(z)n = f(z).

(Thus when n = 2, h(z) is a square root of f(z), when n = 3, h(z) is a cube
root of f(z) etc.)

Problem 4. Prove this. Hint: Let g(z) be a logarithm of f(z) and consider
the function h(z) = eg(z)/n. �

We also used Cauchy’s Theorem to prove

1But you will in Problem 6 below.
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Theorem 7 (Cauchy Integral Fromula). Let D be a bounded domain with
nice boundary and f(z) analytic on the closure of D. Then for any a ∈ D

f(a) =
1

2πi

∫
∂D

f(z)
z − a

dz.
�

We now derive an analogous formula for the derivative of f(z).

Problem 5. Let D be a bounded domain with nice boundary and let f(z)
be analytic in the closure of D.

(a) For any a, h ∈ C show
1

z − (a+ h)
− 1
z − a

=
h

(z − (a+ h))(z − a)
.

(b) If a ∈ D and h is so small that a+ h is also in D show
f(a+ h)− f(a)

h
=

1
2πi

∫
∂D

f(z)
(z − (a+ h))(z − a)

dz.

(c) In part (b) take the limit at h→ 0 to show

f ′(a) =
1

2πi

∫
∂D

f(z)
(z − a)2

dz.
�

Now for the second derivative.

Problem 6. Let D be a bounded domain with nice boundary and let f(z)
be analytic in the closure of D.

(a) For any a, h ∈ C show

1
(z − (a+ h))2

− 1
(z − a)2

=
h
(
2(z − a)− h

)
(z − (a+ h))2(z − a)2

.

(b) If a ∈ D and h is so small that a+ h is also in D show

f ′(a+ h)− f ′(a)
h

=
1

2πi

∫
∂D

(
2(z − a)− h

)
f(z)

(z − (a+ h))2(z − a)2
dz.

(c) In part (b) take the limit as h → 0 to show that f ′′(a) exists and
give a formula for f ′′(a). �

As a was any point of d this shows that (f ′)′ = f ′′ exists at all points of
D. That is f ′ is also analytic in D. So we have

Theorem 8. Let f(z) be analytic in a domain D. Then the derivative, f ′,
of f is also analytic in D. �


