Homework assigned Monday, April 2.

First some review.

Proposition 1. Let f = u + iv be analytic in a connected domain D. Assume that |f(z)| is constant. Then f(z) is constant.

Problem 1. Prove this along the following lines.

- (a) If |f(z)| is constant then show $u^2 + v^2 = c$ for some real constant c.
- (b) If c = 0 show f(z) is the constant function 0.
- (c) If $c \neq 0$ use the Cauchy-Riemann equations to show f(z) is constant.

The following is a special case of something we proved in class last week.

Proposition 2. Let f(z) be continuous on the circle $|z - z_0| = r$. Then

$$\left| \int_0^{2\pi} f(z_0 + re^{it}) \, dt \right| \le \int_0^{2\pi} |f(z_0 + re^{it})| \, dt$$

and if equality holds, then $|f(z_0 + re^{it})|$ is constant (as a function of t.)

Theorem 3 (Maximum modulus principle). Let f(z) be analytic on the closure of $D(z_0, R)$ and assume that |f(z)| has a maximum at $z = z_0$ (that is $|f(z)| \le |f(z_0)|$ for $z \in D(z_0, R)$). Then f(z) is constant in $D(z_0, R)$.

Problem 2. Prove this along the following lines.

(a) If 0 < r < R use the mean value property of analytic functions to write

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

(You don't have to prove this). Then use the argument we gave in class to show

$$|f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})| \, dt \le |f(z_0)|.$$

- (b) Explain why for equality to hold in the second of these inequalities we have $|f(z_0 + re^{it})| = |f(z_0)|$ for $0 \le t \le 2\pi$.
- (c) By varying $r \in (0, R)$ and $t \in [0, 2\pi]$ in part (b) show that $|f(z)| = |f(z_0)|$ for $z \in D(z_0, R)$.
- (d) Now use Proposition 1 to show f(z) is constant in $D(z_0, R)$.

Here is anther form of the maximum modulus principle.

Problem 3. Let D be a bounded domain and let f(z) be analytic on \overline{D} (the closure of D.) Then f(z) achieves its maximum on \overline{D} on the boundary, ∂D , of D.

Problem 4. Prove this along the following lines.

(a) If |f(z)| is constant, then f(z) is constant and so the maximum of |f(z)| occurs at all points of ∂D . In particular it occurs on the boundary.

(b) So assume that f(z) is not constant. Assume, toward a contradiction that the maximum of $|f(z_0)|$ occurs in D rather than on ∂D . Then get a contradiction by showing that f(z) is constant.

Proposition 4 (Minimum modulus principle). Let f(z) be analytic on the closure of $D(z_0, R)$ and assume that |f(z)| has a minimum at $z = z_0$ (that is $|f(z)| \ge |f(z_0)|$ for $z \in D(z_0, R)$). Then either f(z) is constant or $f(z_0) = 0$.

Problem 5. Prove this. *Hint:* If $f(z_0) \neq 0$ then show $f(z) \neq 0$ for all $z \in D(z_0, R)$ and then apply the maximum modulus principle to g(z) = 1/f(z).