
Homework assigned Friday, February 3.

Here we will mostly be looking at consequences of the Cauchy-Riemann
equations. That is if f = u + iv in an open set, then

ux = vy and uy = −vx.

Definition 1. Let U be an open set in the complex plane C. Then a
function h : U → R is harmonic iff

hxx + hyy = 0.

(It is being assumed that the first and second partial derivatives of h exist
and are continuous.) �

A very important result is that the real and imaginary parts of an analytic
function are harmonic. To be precise

Theorem 2. Let f = u + iv be analytic in the open set U . Assume that u
and v have continuous first and second partial derivatives. Then both u and
v are harmonic.

While this is important it is not hard:

Problem 1. Prove the last theorem. Hint: It is a more or less direct
consequence of the Cauchy-Riemann equations. As a start note

uxx = (ux)x = (vy)x = vxy

with a similar formula for uyy in terms of vxy. If you want more or a hint
see page 88 of the text. �

Here is a variant of some of the problems we did in class today.

Problem 2. Let f = u + iv be analytic in a connected open set U . Assume
that u2 − v2 = c where c 6= 0 is a constant. Show f is constant. Hint: It
is enough to show that u and v are constant. And for that it is enough to
show ux = uy = 0 and vx = vy = 0. Take the first partial derivatives of the
equation u2 − v2 = c with respect to x and y and use the Cauchy-Riemann
equations. �

A consequence of our proof of the Cauchy-Riemann equations is

Proposition 3. Let f = u + iv be analytic in an open set U . Then the
derivative of f is give by either of the formulas

f ′ = ux + ivx and f ′ = vy − iuy

(In practice we usually just use f ′ = ux + ivx.) �

Here is an example similar to an example we did in class, if f(z) = e2z,
then

f(z) = e2x cos(2y) + ie2x sin(2y) = u + iv.

Thus
f ′(z) = ux + ivx = 2e2x cos(2y) + i2e2x sin(2y) = 2e2z

just as we expected.
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Problem 3. Use Proposition 3 to show the following (which we are all
familiar with for real values, but which we still need to verify for complex
values.)

(a) If f(z) = cos(z), then f ′(z) = sin(z).
(b) If f(z) = sin(z), then f ′(z) = cos(z).

(c) If f(z) = log(z), then f ′(z) =
1
z

.

While at this point is not clear there is much relationship between analytic
function and functions that can be expressed as a convergent power series,
it will turn out that the two are closely related. Here is a start on that

Proposition 4. Consider the power series

f(z) =
∞∑

n=0

anzn.

Assume this converges for z = z1. Then the series converges for all z with
|z| < |z1|.

Problem 4. Prove this. Before starting we make a few observations. As the
series for f(z1) converges, the terms go to zero. That is limn→∞ anzn

1 = 0.
This implies the terms are bounded, that is there is a constant, C, so that

|anzn
1 | ≤ C.

Define

r =
|z|
|z1|

=
∣∣∣∣ z

z1

∣∣∣∣ .
By hypothesis |z| < |z1|, so

r < 1.

Thus by our basic results about geometric series

(1)
∞∑

n=0

Crn <∞

Now proceed with the proof as follows.
(a) Show |anzn| ≤ Crn. Hint: |anzn| = |anzn

1 ||z/z1|n.
(b) Finish the proof by use of the comparison theorem (look this up if

you have forgotten it) part (a) and (1).

Problem 5 (Not to be handed in). Review the definition of the gradient
and the chain rule for functions of two variables. In particular that the
gradient of a function is orthogonal to the level curves of the function.


