
Homework assigned Monday, March 26.

The first problems here are working up to the proof of the fundamental theorem of
algebra.

We know the triangle inequality for complex numbers

|z + w| ≤ |z|+ |w|.

Problem 1. Use the triangle inequality to show for any complex numbers a, b that

|a + b| ≥ |a| − |b|.
Hint: In the triangle inequality let z = a + b and w = −b.

Problem 2. Use the last problem repeatedly to show

|a + b1 + b2 + · · · bn| ≥ |a| − |b1| − |b2| − · · · − |bn|.

Instead of working with polynomials of degree n, it will simplify notation if we work with
polynomials of degree 3. All the basic ideas are the same.

Problem 3. Let p(z) = z3 + b2z
2 + b1z + b0. Show

|p(z)| ≥ |z|3
(

1− |b2|
|z|
− |b1|
|z|2
− |b0|
|z|3

)
.

Problem 4. With notation as in Problem 3 show that if R = max{1, 6|b2|, 6|b1|, 6|b0|} then
show that for |z| ≥ R (that is |z| ≥ 1, |z| ≥ 6|b2|, |z| ≥ 6|b1|) that the following hold

(a)
1
|z|3
≤ 1
|z|2
≤ 1
|z|
≤ 1. Hint: This only uses |z| ≥ 1.

(b)
|b2|
|z|
≤ 1

6
. Hint: This uses |z| ≥ 6|b2|.

(c)
|b1|
|z|2
≤ 1

6
. Hint: This uses |z| ≥ 6|b1| and part (a).

(d)
|b0|
|z|3
≤ 1

6
. Hint: This uses |z| ≥ 6|b0| and part (a).

(e) |p(z)| ≥ |z|
3

2
≥ 1

2
. Hint: This uses parts (b), (c), (d) and Problem 3.

Recall:

Theorem 1 (Louisville’s Theorem). A bounded entire function is constant. (That is if f(z)
is function that is analytic on all of C and so that there is a constant M with |f(z)| ≤M ,
then f(z) is constant.)

We will now use this to prove

Theorem 2 (Fundamental Theorem of Algebra). Let p(z) = anzn +an−1z
n−1 + · · · a1z +a0

be a complex polynomial of degree n ≥ 1. Then p(z) has at least one complex root. That is
there is at least one complex number r with p(r) = 0.

To start we note that by dividing by an we have that solving

anzn + an−1z
n−1 + · · ·+ a1z + a0 = 0

is the same as solving
zn +

an−1

an
zn−1 + · · ·+ a1

an
z +

a0

an
= 0



2

so there is no loss of generality in assuming that the lead coefficient of p(z) is one. That is
p(z) is of the form

p(z) = zn + bn−1z
n−1 + · · ·+ b1z + b0.

And, just to simplify notation, we assume that n = 3, so

p(z) = z3 + b2z
2 + b1z + b0.

Assume, towards a contradiction, that p(z) has no roots. That is p(z) 6= 0 for all
z ∈ C. Define a new function f(z) by

f(z) =
1

p(z)
.

Problem 5. Explain why f(z) is an entire function.

Problem 6. Let R be as in Problem 4. Show

|z| ≥ R implies |f(z)| ≤ 2.

Problem 7. The function |f(z)| is continuous on the closed bounded set {z : |z| ≤ R}, so
there is a constant C such that

|z| ≤ R implies |f(z)| ≤ C.

(This is a basic fact from Mathematics 554, so you don’t have to prove it, just copy it down
to get credit.)

Problem 8. Let R be as in Problem 4 and set M = max{2, R}. Combine Problems 6 and
7 to show

|f(z)| ≤M

for all z ∈ C.

Problem 9. Now show that f(z) =
1

p(z)
is constant and therefore p(z) is also constant.

And finally

Problem 10. To finish the proof explain why the assumption p(z) has no roots leads to a
contradiction.


