Homework assigned Monday, March 26.

The first problems here are working up to the proof of the fundamental theorem of algebra.

We know the *triangle inequality* for complex numbers

$$|z+w| \le |z| + |w|.$$

Problem 1. Use the triangle inequality to show for any complex numbers a, b that

$$|a+b| \ge |a| - |b|.$$

Hint: In the triangle inequality let z = a + b and w = -b.

Problem 2. Use the last problem repeatedly to show

$$|a + b_1 + b_2 + \dots + b_n| \ge |a| - |b_1| - |b_2| - \dots - |b_n|.$$

Instead of working with polynomials of degree n, it will simplify notation if we work with polynomials of degree 3. All the basic ideas are the same.

Problem 3. Let $p(z) = z^3 + b_2 z^2 + b_1 z + b_0$. Show

$$|p(z)| \ge |z|^3 \left(1 - \frac{|b_2|}{|z|} - \frac{|b_1|}{|z|^2} - \frac{|b_0|}{|z|^3} \right).$$

Problem 4. With notation as in Problem 3 show that if $R = \max\{1, 6|b_2|, 6|b_1|, 6|b_0|\}$ then show that for $|z| \ge R$ (that is $|z| \ge 1$, $|z| \ge 6|b_2|$, $|z| \ge 6|b_1|$) that the following hold

(a) $\frac{1}{|z|^3} \le \frac{1}{|z|^2} \le \frac{1}{|z|} \le 1$. *Hint:* This only uses $|z| \ge 1$. (b) $\frac{|b_2|}{|z|} \le \frac{1}{6}$. *Hint:* This uses $|z| \ge 6|b_2|$. (c) $\frac{|b_1|}{|z|^2} \le \frac{1}{6}$. *Hint:* This uses $|z| \ge 6|b_1|$ and part (a). (d) $\frac{|b_0|}{|z|^3} \le \frac{1}{6}$. *Hint:* This uses $|z| \ge 6|b_0|$ and part (a). (e) $|p(z)| \ge \frac{|z|^3}{2} \ge \frac{1}{2}$. *Hint:* This uses parts (b), (c), (d) and Problem 3. Recall:

Theorem 1 (Louisville's Theorem). A bounded entire function is constant. (That is if f(z) is function that is analytic on all of **C** and so that there is a constant M with $|f(z)| \leq M$, then f(z) is constant.)

We will now use this to prove

Theorem 2 (Fundamental Theorem of Algebra). Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ be a complex polynomial of degree $n \ge 1$. Then p(z) has at least one complex root. That is there is at least one complex number r with p(r) = 0.

To start we note that by dividing by a_n we have that solving

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0$$

is the same as solving

$$z^{n} + \frac{a_{n-1}}{a_{n}}z^{n-1} + \dots + \frac{a_{1}}{a_{n}}z + \frac{a_{0}}{a_{n}} = 0$$

so there is no loss of generality in assuming that the lead coefficient of p(z) is one. That is p(z) is of the form

$$p(z) = z^n + b_{n-1}z^{n-1} + \dots + b_1z + b_0z$$

And, just to simplify notation, we assume that n = 3, so

$$p(z) = z^3 + b_2 z^2 + b_1 z + b_0$$

Assume, towards a contradiction, that p(z) has no roots. That is $p(z) \neq 0$ for all $z \in \mathbb{C}$. Define a new function f(z) by

$$f(z) = \frac{1}{p(z)}$$

Problem 5. Explain why f(z) is an entire function.

Problem 6. Let R be as in Problem 4. Show

$$|z| \ge R$$
 implies $|f(z)| \le 2$.

Problem 7. The function |f(z)| is continuous on the closed bounded set $\{z : |z| \le R\}$, so there is a constant C such that

$$|z| \le R$$
 implies $|f(z)| \le C$.

(This is a basic fact from Mathematics 554, so you don't have to prove it, just copy it down to get credit.)

Problem 8. Let R be as in Problem 4 and set $M = \max\{2, R\}$. Combine Problems 6 and 7 to show $|f(z)| \leq M$

for all $z \in C$.

Problem 9. Now show that $f(z) = \frac{1}{p(z)}$ is constant and therefore p(z) is also constant.

And finally

Problem 10. To finish the proof explain why the assumption p(z) has no roots leads to a contradiction.