
Homework assigned Wednesday, February 29.

The following problems are to prepare for results that we are about to prove.

Problem 1. Let f(z) be analytic in a domain D and let a ∈ K. Let r > 0 be so small that
the disk |z − a| ≤ r is contained in D.

(a) Parametrize |z − a| = r by z = a + reit with 0 ≤ t ≤ 2π. Use this reparameterizing
to show that

∫

|z−a|=r

f(z)

z − a
dz = i

∫ 2π

0
f(a + reit) dt.

(b) Use part (a) to show

lim
r→0+

∫

|z−a|=r

f(z)

z − a
dz = 2πif(a).
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Figure 1

In the next problem we will be using Cauchy’s theorem, which we now recall.

Theorem 1 (Cauchy’s Theorem). Let D be a bounded domain with nice boundary and f(z)
a function that is analytic on the closure of D. Then

∫

∂D

f(z) dz = 0

where, as usual, we orient ∂D so as we move with the inside on our left. ¤

Problem 2. In Figure 1 we have a bounded domain with nice boundary and a point a
inside. Let f(z) be a function that is analytic on the closure of D. Let r be a small positive
number and Dr the domain D with the inside of the circle |z − a| = r removed. That is Dr

is the region inside of D and outside of |z − a| = r.

(a) Explain why
∫

∂Dr

f(z)

z − a
dz = 0.

Hint: The function g(z) = f(z)
z−a

is analytic in Dr.

(b) The boundary of ∂Dr has two pieces. First there is the boundary, ∂D, of the original
domain and second there is the circle |z − a| = r. Thus

∫

∂Dr

f(z)

z − a
dz =

∫

∂D

f(z)

z − a
dz −

∫

|z−a|=r

f(z)

z − a
dz.

Explain why the sign on the second integral is negative. Hint: We always move
along the boundary with the inside on our left.
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(c) Combine parts (a) and (b) to conclude
∫

∂D

f(z)

z − a
dz =

∫

|z−a|=r

f(z)

z − a
dz.

(d) In the last equation take the limit at r goes to 0 and part (b) of Problem 1 to
conclude

∫

∂D

f(z)

z − a
dz = 2πif(a).

We have thus proven the following, which is maybe the most important result in complex
analysis.

Theorem 2 (Cauchy Integral Formula). Let D be a bounded domain with nice boundary

and f(z) be analytic on the closure of D. Then for any point a ∈ D

f(a) =
1

2πi

∫

∂D

f(z) dz

z − a
.

¤

Example. Let γ be the path in Figure 2.
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Figure 2

We now use the Cauchy Integral formula to evaluate
∫

γ

ez

z2 + π2
dz.

This function is analytic except where the denominator becomes zero. That is where z2 +
π2 = 0. Note that z2 + π2 = (z − πi)(z + πi). So that the bad points are z = πi and
z = −πi. Thus our integral becomes

∫

γ

ez

(z − πi)(z + πi)
dz.

We only need to work about the point πi as it is the only non-analytic point inside of γ.
Rewrite the integral as

∫

γ

ez/(z + πi)

(z − πi)
dz =

∫

γ

f(z)

(z − πi)
dz

where

f(z) =
ez

z + πi
.

The function f(z) is analytic inside of γ. So by the Cauchy integral formula
∫

γ

ez

z2 + π2
dz =

∫

γ

f(z)

(z − πi)
dz = 2πif(πi) = 2πi

eπi

πi + πi
= eπi = −1.

¤
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Problem 3. Let z1 be a complex number and γ a simple closed curve that does not pass
through z1. Show

∫

γ

dz

z − z1
=

{

2πi, if z1 is inside of γ,

0, if z1 is outside of γ.

Hint: Use part (d) of Problem 2, or the Cauchy Integral Formula, with f(z) = 1, D the
region inside of γ, and z = z1.
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Figure 3

Problem 4. Figure 3 shows the points i, −i, 0, and 4 along with three paths α, β, and γ.
Use either part (d) or Problem 2 or the Cauchy integral formula to

(a) Evaluate

∫

α

2z + 1

z(z − 4)(z2 + 1)
dz,

(b) Evaluate

∫

β

2z + 1

z(z − 4)(z2 + 1)
dz, and

(c) Evaluate

∫

γ

2z + 1

z(z − 4)(z2 + 1)
dz.


